Twin Cities campus
 
Twin Cities Campus

Computer Science Minor

Computer Science and Engineering
College of Science and Engineering
Link to a list of faculty for this program.
Contact Information
Department of Computer Science and Engineering, University of Minnesota, 4-192 Keller Hall, 200 Union Street S.E., Minneapolis, MN 55455 (612- 625-4002; fax: 612-625-0572)
  • Program Type: Graduate minor related to major
  • Requirements for this program are current for Spring 2022
  • Length of program in credits (master's): 9
  • Length of program in credits (doctoral): 13
  • This program does not require summer semesters for timely completion.
The graduate program in computer science offers coursework from across a broad spectrum of theoretical and applied computer science and combines research opportunities in nearly all areas of the field. The graduate program's faculty members advise students in such areas as algorithms and theoretical computer science; numerical, parallel, and high-performance computing; distributed computing and systems; artificial intelligence, robotics, and computer vision; databases and data mining; human-computer interaction and information systems; graphics and visualization; software engineering and programming languages; computer architecture and compilers; networking; bioinformatics and computational biology; and computer security. Faculty from the Department of Computer Science and Engineering also participate in a variety of other graduate programs, including Bioinformatics and Computational Biology, Health Informatics, Cognitive Science, Scientific Computation, and Human Factors and Ergonomics.
Program Delivery
  • via classroom (the majority of instruction is face-to-face)
Prerequisites for Admission
Special Application Requirements:
Students interested in the minor are strongly encouraged to confer with their major field advisor and director of graduate studies, and the Computer Science director of graduate studies regarding feasibility and requirements.
For an online application or for more information about graduate education admissions, see the General Information section of this website.
Program Requirements
Use of 4xxx courses toward program requirements is permitted under certain conditions with adviser approval.
Only one 4xxx-level course may be applied to minor field course requirements. Coursework applied to the minor that is offered on both the A-F and S/N grading basis must be taken A-F. The minimum cumulative GPA for minor field coursework is 3.00 for masterís students and 3.25 for doctoral students.
Minor Coursework (9 to 12 credits)
Masterís students select 9 credits, and doctoral students select 12 credits from the following in consultation with the Computer Science graduate program coordinator. Advanced Computer Science Courses require students to complete at least 1 8xxx-level course or 1 5xxx-level course with a 5xxx-level prerequisite. Other courses may be applied to the minor with approval of the Computer Science graduate program coordinator.
Advanced Computer Science Courses (3 credits)
Select at least 3 credits from the following in consultation with the Computer Science graduate program coordinator:
CSCI 5105 - Introduction to Distributed Systems (3.0 cr)
CSCI 5125 - Collaborative and Social Computing (3.0 cr)
CSCI 5161 - Introduction to Compilers (3.0 cr)
CSCI 5525 - Machine Learning: Analysis and Methods (3.0 cr)
CSCI 5552 - Sensing and Estimation in Robotics (3.0 cr)
CSCI 5561 - Computer Vision (3.0 cr)
CSCI 5608 - Fundamentals of Computer Graphics II (3.0 cr)
CSCI 5751 - Big Data Engineering and Architecture (3.0 cr)
CSCI 5802 - Software Engineering II (3.0 cr)
CSCI 8101 - Advanced Operating Systems (3.0 cr)
CSCI 8102 - Foundations of Distributed Computing (3.0 cr)
CSCI 8115 - Human-Computer Interaction and User Interface Technology (3.0 cr)
CSCI 8117 - Understanding the Social Web (3.0 cr)
CSCI 8161 - Advanced Compiler Techniques (3.0 cr)
CSCI 8205 - Parallel Computer Organization (3.0 cr)
CSCI 8211 - Advanced Computer Networks and Their Applications (3.0 cr)
CSCI 8271 - Security and Privacy in Computing (3.0 cr)
CSCI 8314 - Sparse Matrix Computations (3.0 cr)
CSCI 8363 - Numerical Linear Algebra in Data Exploration (3.0 cr)
CSCI 8442 - Computational Geometry and Applications (3.0 cr)
CSCI 8551 - Intelligent Agents (3.0 cr)
CSCI 8581 - Big Data in Astrophysics (4.0 cr)
CSCI 8701 - Overview of Database Research (3.0 cr)
CSCI 8715 - Spatial Data Science Research (3.0 cr)
CSCI 8725 - Databases for Bioinformatics (3.0 cr)
CSCI 8735 - Advanced Database Systems (3.0 cr)
CSCI 8801 - Advanced Software Engineering (3.0 cr)
CSCI 8980 - Special Advanced Topics in Computer Science (1.0-3.0 cr)
Masterís students select credits from the following as needed to complete the 9-credit requirement for the minor, and doctoral students select credits as needed to complete the 12 non-colloquium credits required. Courses are selected in consultation with the Computer Science graduate program coordinator. Other courses can be chosen with Computer Science graduate program coordinator approval.
CSCI 5103 - Operating Systems (3.0 cr)
CSCI 5106 - Programming Languages (3.0 cr)
CSCI 5115 - User Interface Design, Implementation and Evaluation (3.0 cr)
CSCI 5123 - Recommender Systems (3.0 cr)
CSCI 5127W - Embodied Computing: Design & Prototyping [WI] (3.0 cr)
CSCI 5143 - Real-Time and Embedded Systems (3.0 cr)
CSCI 5204 - Advanced Computer Architecture (3.0 cr)
CSCI 5211 - Data Communications and Computer Networks (3.0 cr)
CSCI 5271 - Introduction to Computer Security (3.0 cr)
CSCI 5302 - Analysis of Numerical Algorithms (3.0 cr)
CSCI 5304 - Computational Aspects of Matrix Theory (3.0 cr)
CSCI 5421 - Advanced Algorithms and Data Structures (3.0 cr)
CSCI 5451 - Introduction to Parallel Computing: Architectures, Algorithms, and Programming (3.0 cr)
CSCI 5461 - Functional Genomics, Systems Biology, and Bioinformatics (3.0 cr)
CSCI 5471 - Modern Cryptography (3.0 cr)
CSCI 5481 - Computational Techniques for Genomics (3.0 cr)
CSCI 5511 - Artificial Intelligence I (3.0 cr)
CSCI 5512 - Artificial Intelligence II (3.0 cr)
CSCI 5521 - Machine Learning Fundamentals (3.0 cr)
CSCI 5523 - Introduction to Data Mining (3.0 cr)
CSCI 5551 - Introduction to Intelligent Robotic Systems (3.0 cr)
CSCI 5563 - Multiview 3D Geometry in Computer Vision (3.0 cr)
CSCI 5607 - Fundamentals of Computer Graphics 1 (3.0 cr)
CSCI 5609 - Visualization (3.0 cr)
CSCI 5611 - Animation & Planning in Games (3.0 cr)
CSCI 5619 - Virtual Reality and 3D Interaction (3.0 cr)
CSCI 5707 - Principles of Database Systems (3.0 cr)
CSCI 5708 - Architecture and Implementation of Database Management Systems (3.0 cr)
CSCI 5715 - From GPS, Google Maps, and Uber to Spatial Data Science (3.0 cr)
CSCI 5801 - Software Engineering I (3.0 cr)
CSCI 5980 - Special Topics in Computer Science (1.0-3.0 cr)
Program Sub-plans
Students are required to complete one of the following sub-plans.
Students may not complete the program with more than one sub-plan.
Masters
Doctoral
Colloquium (1 credit)
Doctoral students take the following to complete the 13-credit requirement:
CSCI 8970 - Computer Science Colloquium (1.0 cr)
 
More program views..
View college catalog(s):
· College of Science and Engineering

View future requirement(s):
· Fall 2022

View PDF Version:
Search.
Search Programs

Search University Catalogs
Related links.

College of Science and Engineering

Graduate Admissions

Graduate School Fellowships

Graduate Assistantships

Colleges and Schools

One Stop
for tuition, course registration, financial aid, academic calendars, and more
 
CSCI 5105 - Introduction to Distributed Systems
Credits: 3.0 [max 3.0]
Typically offered: Periodic Spring
Distributed system design and implementation. Distributed communication and synchronization, data replication and consistency, distributed file systems, fault tolerance, and distributed scheduling. prereq: [5103 or equiv] or instr consent
CSCI 5125 - Collaborative and Social Computing
Credits: 3.0 [max 3.0]
Typically offered: Spring Even Year
Introduction to computer-supported cooperative work, social computing. Technology, research methods, theory, case studies of group computing systems. Readings, hands-on experience. prereq: 5115 or instr consent
CSCI 5161 - Introduction to Compilers
Credits: 3.0 [max 3.0]
Typically offered: Every Spring
Techniques for translating modern programming languages to intermediate forms or machine-executable instructions/their organization into compiler. Lexical analysis, syntax analysis, semantic analysis, data flow analysis, code generation. Compiler project for prototypical language. prereq: [2021, 5106] or instr consent
CSCI 5525 - Machine Learning: Analysis and Methods
Credits: 3.0 [max 3.0]
Typically offered: Fall Even Year
Models of learning. Supervised algorithms such as perceptrons, logistic regression, and large margin methods (SVMs, boosting). Hypothesis evaluation. Learning theory. Online algorithms such as winnow and weighted majority. Unsupervised algorithms, dimensionality reduction, spectral methods. Graphical models. prereq: Grad student or instr consent
CSCI 5552 - Sensing and Estimation in Robotics
Credits: 3.0 [max 3.0]
Typically offered: Periodic Spring
Bayesian estimation, maximum likelihood estimation, Kalman filtering, particle filtering. Sensor modeling and fusion. Mobile robot motion estimation (odometry, inertial,laser scan matching, vision-based) and path planning. Map representations, landmark-based localization, Markov localization, simultaneous localization/mapping (SLAM), multi-robot localization/mapping. prereq: [5551, Stat 3021] or instr consent
CSCI 5561 - Computer Vision
Credits: 3.0 [max 3.0]
Typically offered: Every Spring
Issues in perspective transformations, edge detection, image filtering, image segmentation, and feature tracking. Complex problems in shape recovery, stereo, active vision, autonomous navigation, shadows, and physics-based vision. Applications. prereq: CSci 5511, 5521, or instructor consent.
CSCI 5608 - Fundamentals of Computer Graphics II
Credits: 3.0 [max 3.0]
Typically offered: Periodic Spring
Advanced topics in image synthesis, modeling, rendering. Image processing, image warping, global illumination, non-photorealistic rendering, texture synthesis. Parametric cubic surfaces, subdivision surfaces, acceleration techniques, advanced texture mapping. Programming in C/C++. prereq: 5607 or instr consent
CSCI 5751 - Big Data Engineering and Architecture
Credits: 3.0 [max 3.0]
Typically offered: Every Fall
Big data and data-intensive application management, design and processing concepts. Data modeling on different NoSQL databases: key/value, column-family, document, graph-based stores. Stream and real-time processing. Big data architectures. Distributed computing using Spark, Hadoop or other distributed systems. Big data projects. prereq: 4041, 5707, or instructor consent.
CSCI 5802 - Software Engineering II
Credits: 3.0 [max 3.0]
Typically offered: Periodic Spring
Introduction to software testing, software maturity models, cost specification models, bug estimation, software reliability models, software complexity, quality control, and experience report. Student groups specify, design, implement, and test partial software systems. Application of general software development methods and principles from 5801. prereq: 5801 or instr consent
CSCI 8101 - Advanced Operating Systems
Credits: 3.0 [max 3.0]
Typically offered: Periodic Fall
Successful research systems and existing theory of systems design. Goal is not merely to catalog systems or learn mathematics, but to develop a sense of elegance of design that leads to successful systems. prereq: 5103 or instr consent
CSCI 8102 - Foundations of Distributed Computing
Credits: 3.0 [max 3.0]
Typically offered: Periodic Spring
Fundamental principles underlying design of distributed and multiprocessor operating systems. Foundations of distributed computing systems; shared multiprocessor systems. prereq: 8101 or instr consent
CSCI 8115 - Human-Computer Interaction and User Interface Technology
Credits: 3.0 [max 3.0]
Typically offered: Periodic Fall & Spring
Current research issues in human-computer interaction, user interface toolkits and frameworks, and related areas. Research techniques, model-based development, gesture-based interfaces, constraint-based programming, event processing models, innovative systems, HCI in multimedia systems. prereq: 5115 or instr consent
CSCI 8117 - Understanding the Social Web
Credits: 3.0 [max 3.0]
Typically offered: Periodic Fall & Spring
Research on the social web. Read, present, and discuss papers, do homework using social web research techniques such as data analysis and simulation. Semester research project. prereq: CS grad or instr consent
CSCI 8161 - Advanced Compiler Techniques
Credits: 3.0 [max 3.0]
Typically offered: Periodic Fall & Spring
Techniques for uniprocessors and parallel computers. Fundamental program analysis instruments such as data flow analysis and data dependence analysis. Variety of code generation and transformation techniques. prereq: 4061 or instr consent
CSCI 8205 - Parallel Computer Organization
Credits: 3.0 [max 3.0]
Course Equivalencies: CSci 8205/EE 8367
Typically offered: Every Spring
Design/implementation of multiprocessor systems. Parallel machine organization, system design. Differences between parallel, uniprocessor machines. Programming models. Synchronization/communication. Topologies, message routing strategies. Performance optimization techniques. Compiler, system software issues. prereq: 5204 or EE 5364 or instr consent
CSCI 8211 - Advanced Computer Networks and Their Applications
Credits: 3.0 [max 3.0]
Typically offered: Periodic Fall & Spring
Current research issues in traffic and resource management, quality-of-service provisioning for integrated services networks (such as next-generation Internet and ATM networks) and multimedia networking. prereq: 5211 or instr consent
CSCI 8271 - Security and Privacy in Computing
Credits: 3.0 [max 3.0]
Grading Basis: A-F or Aud
Typically offered: Periodic Fall
Recent security/privacy issues in computer systems/networks. Threats, attacks, countermeasures. Security research, authentication, network security, wireless security, computer system security, anonymous system, pseudonym, access control, intrusion detection system, cryptographic protocols. How to pursue research in security and design secure systems. prereq: [5211, 5103] or instr consent; 5471 or EE 5248 or Math 5248 or equiv recommended
CSCI 8314 - Sparse Matrix Computations
Credits: 3.0 [max 3.0]
Typically offered: Periodic Spring
Sparsity and sparse matrices. Data structures for sparse matrices. Direct methods for sparse linear systems. Reordering techniques to reduce fill-in such as minimal degree ordering and nested dissection ordering. Iterative methods. Preconditioning algorithms. Algorithms for sparse eigenvalue problems and sparse least-squares. prereq: 5304 or numerical linear algebra course or instr consent
CSCI 8363 - Numerical Linear Algebra in Data Exploration
Credits: 3.0 [max 3.0]
Typically offered: Periodic Spring
Computational methods in linear algebra, matrix decompositions for linear equations, least squares, eigenvalue problems, singular value decomposition, conditioning, stability in method for machine learning, large data collections. Principal directions, unsupervised clustering, latent semantic indexing, linear least squares fit. Markov chain models on hyperlink structure. prereq: 5304 or instr consent
CSCI 8442 - Computational Geometry and Applications
Credits: 3.0 [max 3.0]
Typically offered: Periodic Spring
Designing efficient algorithms and data structures for geometric problems. Models of computation, convex hulls, geometric duality, multidimensional search, Voronoi diagrams and Delauney triangulations, linear programming in fixed dimensions, lower bound techniques. Applications, advanced topics. prereq: 5421 or instr consent
CSCI 8551 - Intelligent Agents
Credits: 3.0 [max 3.0]
Typically offered: Periodic Fall
Theories of intelligent agents. Agent architectures; knowledge representation, communication, cooperation, and negotiation among multiple agents; planning and learning; issues in designing agents with a physical body; dealing with sensors and actuators; world modeling. prereq: 5511 or instr consent
CSCI 8581 - Big Data in Astrophysics
Credits: 4.0 [max 4.0]
Course Equivalencies: Ast 8581/CSci 8581/Phys 8581
Grading Basis: A-F only
Typically offered: Every Spring
This course will introduce key concepts and techniques used to work with large datasets, in the context of the field of astrophysics. Prerequisites: MATH 2263 and MATH 2243, or equivalent; or instructor consent. Suggested: familiarity with astrophysics topics such as star formation and evolution, galaxies and clusters, composition and expansion of the universe, gravitational wave sources and waveforms, and high-energy astrophysics.
CSCI 8701 - Overview of Database Research
Credits: 3.0 [max 3.0]
Typically offered: Periodic Fall & Spring
Research papers from journals and conferences on current topics in databases, such as database research methodologies, relational implementation techniques, active databases, storage systems, benchmarking, distributed and parallel databases, new data models, prototype systems, data mining, and future directions. prereq: 5708 or instr consent
CSCI 8715 - Spatial Data Science Research
Credits: 3.0 [max 3.0]
Typically offered: Periodic Fall & Spring
Motivation, models of spatial information, querying spatial data, processing strategies for spatial queries, multi-dimensional storage/access methods, spatial graph datasets, spatial data mining, trends (e.g., spatio-temporal databases, mobile objects, raster databases), research literature, how to pursue research. prereq: 4707 or 5707 or 5715 or GIS 5571 or GIS 5573
CSCI 8725 - Databases for Bioinformatics
Credits: 3.0 [max 3.0]
Typically offered: Periodic Spring
DBMS support for biological databases, data models. Searching integrated public domain databases. Queries/analyses, DBMS extensions, emerging applications. prereq: 4707 or 5707 or instr consent
CSCI 8735 - Advanced Database Systems
Credits: 3.0 [max 3.0]
Grading Basis: A-F or Aud
Typically offered: Periodic Fall
Database systems for emerging applications, nontraditional query processors, multi-dimensional data indexing. Current research trends. prereq: 4707 or 5707 or 5708
CSCI 8801 - Advanced Software Engineering
Credits: 3.0 [max 3.0]
Typically offered: Periodic Fall & Spring
Software reusability, internet/intranet programming, software reengineering, and software safety. prereq: 5801 or instr consent
CSCI 8980 - Special Advanced Topics in Computer Science
Credits: 1.0 -3.0 [max 27.0]
Typically offered: Every Fall & Spring
Lectures and informal discussions. prereq: instr consent
CSCI 5103 - Operating Systems
Credits: 3.0 [max 3.0]
Typically offered: Every Fall
Conceptual foundation of operating system designs and implementations. Relationships between operating system structures and machine architectures. UNIX implementation mechanisms as examples. prereq: 4061 or instr consent
CSCI 5106 - Programming Languages
Credits: 3.0 [max 3.0]
Typically offered: Every Fall
Design and implementation of high-level languages. Course has two parts: (1) language design principles, concepts, constructs; (2) language paradigms, applications. Note: course does not teach how to program in specific languages. prereq: 4011 or instr consent
CSCI 5115 - User Interface Design, Implementation and Evaluation
Credits: 3.0 [max 3.0]
Typically offered: Every Fall
Theory, design, programming, and evaluation of interactive application interfaces. Human capabilities and limitations, interface design and engineering, prototyping and interface construction, interface evaluation, and topics such as data visualization and World Wide Web. Course is built around a group project. prereq: 4041 or instr consent
CSCI 5123 - Recommender Systems
Credits: 3.0 [max 3.0]
Typically offered: Fall Odd Year
An overview of recommender systems, including content-based and collaborative algorithms for recommendation, programming of recommender systems, and evaluation and metrics for recommender systems. prereq: Java programming and 2033 and 3081, or instructor consent.
CSCI 5127W - Embodied Computing: Design & Prototyping (WI)
Credits: 3.0 [max 3.0]
Typically offered: Fall Even Year
In this course, you will learn and apply the principles of embodied computing to human-centered challenges. Through a semester-long team project, you will learn and demonstrate mastery of human-centered embodied computing through two phases: (1) investigating human needs and current embodied practices and (2) rapidly prototyping and iterating embodied computing solutions. One of the ways you will demonstrate this mastery is through the collaborative creation of a written document and project capstone video describing your process and prototype. prereq: CSci 4041, upper division or graduate student, or instructor permission; CSci 5115 or equivalent recommended.
CSCI 5143 - Real-Time and Embedded Systems
Credits: 3.0 [max 3.0]
Grading Basis: A-F only
Typically offered: Periodic Spring
Real-time systems that require timely response by computer to external stimulus. Embedded systems in which computer is part of machine. Increasing importance of these systems in commercial products. How to control robots and video game consoles. Lecture, informal lab. prereq: [4061 or instr consent], experience with C language
CSCI 5204 - Advanced Computer Architecture
Credits: 3.0 [max 3.0]
Course Equivalencies: CSci 5204/EE 5364
Typically offered: Every Fall
Instruction set architecture, processor microarchitecture, memory, I/O systems. Interactions between computer software and hardware. Methodologies of computer design. prereq: 4203 or EE 4363
CSCI 5211 - Data Communications and Computer Networks
Credits: 3.0 [max 3.0]
Course Equivalencies: CSci 4211/CSci 5211/INET 4002
Typically offered: Every Fall
Concepts, principles, protocols, and applications of computer networks. Layered network architectures, data link protocols, local area networks, network layer/routing protocols, transport, congestion/flow control, emerging high-speed networks, network programming interfaces, networked applications. Case studies using Ethernet, Token Ring, FDDI, TCP/IP, ATM, Email, HTTP, and WWW. prereq: [4061 or instr consent], basic knowledge of [computer architecture, operating systems, probability], grad student
CSCI 5271 - Introduction to Computer Security
Credits: 3.0 [max 3.0]
Typically offered: Every Fall
Concepts of computer, network, and information security. Risk analysis, authentication, access control, security evaluation, audit trails, cryptography, network/database/application security, viruses, firewalls. prereq: 4061 or equiv or instr consent
CSCI 5302 - Analysis of Numerical Algorithms
Credits: 3.0 [max 3.0]
Typically offered: Every Spring
Additional topics in numerical analysis. Interpolation, approximation, extrapolation, numerical integration/differentiation, numerical solutions of ordinary differential equations. Introduction to optimization techniques. prereq: 2031 or 2033 or instr consent
CSCI 5304 - Computational Aspects of Matrix Theory
Credits: 3.0 [max 3.0]
Typically offered: Every Fall
Perturbation theory for linear systems and eigenvalue problems. Direct/iterative solution of large linear systems. Matrix factorizations. Computation of eigenvalues/eigenvectors. Singular value decomposition. LAPACK/other software packages. Introduction to sparse matrix methods. prereq: 2031 or 2033 or instr consent
CSCI 5421 - Advanced Algorithms and Data Structures
Credits: 3.0 [max 3.0]
Typically offered: Every Fall & Spring
Fundamental paradigms of algorithm and data structure design. Divide-and-conquer, dynamic programming, greedy method, graph algorithms, amortization, priority queues and variants, search structures, disjoint-set structures. Theoretical underpinnings. Examples from various problem domains. prereq: 4041 or instr consent
CSCI 5451 - Introduction to Parallel Computing: Architectures, Algorithms, and Programming
Credits: 3.0 [max 3.0]
Typically offered: Every Spring
Parallel architectures design, embeddings, routing. Examples of parallel computers. Fundamental communication operations. Performance metrics. Parallel algorithms for sorting. Matrix problems, graph problems, dynamic load balancing, types of parallelisms. Parallel programming paradigms. Message passing programming in MPI. Shared-address space programming in openMP or threads. prereq: 4041 or instr consent
CSCI 5461 - Functional Genomics, Systems Biology, and Bioinformatics
Credits: 3.0 [max 3.0]
Typically offered: Every Spring
Computational methods for analyzing, integrating, and deriving predictions from genomic/proteomic data. Analyzing gene expression, proteomic data, and protein-protein interaction networks. Protein/gene function prediction, Integrating diverse data, visualizing genomic datasets. prereq: 3003 or 4041 or instr consent
CSCI 5471 - Modern Cryptography
Credits: 3.0 [max 3.0]
Typically offered: Periodic Fall & Spring
Introduction to cryptography. Theoretical foundations, practical applications. Threats, attacks, and countermeasures, including cryptosystems and cryptographic protocols. Secure systems/networks. History of cryptography, encryption (conventional, public key), digital signatures, hash functions, message authentication codes, identification, authentication, applications. prereq: [2011, 4041, [familiarity with number theory or finite fields]] or instr consent
CSCI 5481 - Computational Techniques for Genomics
Credits: 3.0 [max 3.0]
Typically offered: Every Fall
Techniques to analyze biological data generated by genome sequencing, proteomics, cell-wide measurements of gene expression changes. Algorithms for single/multiple sequence alignments/assembly. Search algorithms for sequence databases, phylogenetic tree construction algorithms. Algorithms for gene/promoter and protein structure prediction. Data mining for micro array expression analysis. Reverse engineering of regulatory networks. prereq: 4041 or instr consent
CSCI 5511 - Artificial Intelligence I
Credits: 3.0 [max 3.0]
Course Equivalencies: CSci 4511W/CSci 5511
Prerequisites: [2041 or #], grad student
Typically offered: Every Fall
Introduction to AI. Problem solving, search, inference techniques. Logic/theorem proving. Knowledge representation, rules, frames, semantic networks. Planning/scheduling. Lisp programming language. prereq: [2041 or instr consent], grad student
CSCI 5512 - Artificial Intelligence II
Credits: 3.0 [max 3.0]
Course Equivalencies: CSci 5512W/CSci 5512
Typically offered: Every Spring
Uncertainty in artificial intelligence. Probability as a model of uncertainty, methods for reasoning/learning under uncertainty, utility theory, decision-theoretic methods. prereq: [STAT 3021, 4041] or instr consent
CSCI 5521 - Machine Learning Fundamentals
Credits: 3.0 [max 3.0]
Typically offered: Periodic Fall
Problems of pattern recognition, feature selection, measurement techniques. Statistical decision theory, nonstatistical techniques. Automatic feature selection/data clustering. Syntactic pattern recognition. Mathematical pattern recognition/artificial intelligence. Prereq: [2031 or 2033], STAT 3021, and knowledge of partial derivatives
CSCI 5523 - Introduction to Data Mining
Credits: 3.0 [max 3.0]
Typically offered: Periodic Fall & Spring
Data pre-processing techniques, data types, similarity measures, data visualization/exploration. Predictive models (e.g., decision trees, SVM, Bayes, K-nearest neighbors, bagging, boosting). Model evaluation techniques, Clustering (hierarchical, partitional, density-based), association analysis, anomaly detection. Case studies from areas such as earth science, the Web, network intrusion, and genomics. Hands-on projects. prereq: 4041 or equiv or instr consent
CSCI 5551 - Introduction to Intelligent Robotic Systems
Credits: 3.0 [max 3.0]
Typically offered: Periodic Fall
Transformations, kinematics/inverse kinematics, dynamics, control. Sensing (robot vision, force control, tactile sensing), applications of sensor-based robot control, robot programming, mobile robotics, microrobotics. prereq: 2031 or 2033 or instr consent
CSCI 5563 - Multiview 3D Geometry in Computer Vision
Credits: 3.0 [max 3.0]
Grading Basis: A-F or Aud
Typically offered: Every Spring
The 3D spatial relationship between cameras and scenes in computer vision. Application to tasks such as planning robots, reconstructing scenes from photos, and understanding human behaviors from body-worn cameras data. Multiview theory fundamentals, structure-from-motion, state-of-the-art approaches, and current research integration. Prereq: Students enrolling in this course must have completed CSCI 5561 or have instructor consent.
CSCI 5607 - Fundamentals of Computer Graphics 1
Credits: 3.0 [max 3.0]
Typically offered: Every Fall
Fundamental algorithms in computer graphics. Emphasizes programming projects in C/C++. Scan conversion, hidden surface removal, geometrical transformations, projection, illumination/shading, parametric cubic curves, texture mapping, antialising, ray tracing. Developing graphics software, graphics research. prereq: concurrent registration is required (or allowed) in 2033, concurrent registration is required (or allowed) in 3081
CSCI 5609 - Visualization
Credits: 3.0 [max 3.0]
Typically offered: Fall Even Year
Fundamental theory/practice in data visualization. Programming applications. Perceptual issues in effective data representation, multivariate visualization, information visualization, vector field/volume visualization. prereq: [1913, 4041] or equiv or instr consent
CSCI 5611 - Animation & Planning in Games
Credits: 3.0 [max 3.0]
Typically offered: Fall Odd Year
Theory behind algorithms used to bring virtual worlds to life. Computer animation topics. Real-time, interactive techniques used in modern games. Physically-based animation, motion planning, character animation, simulation in virtual worlds. prereq: 4041 or 4611 or instr consent
CSCI 5619 - Virtual Reality and 3D Interaction
Credits: 3.0 [max 3.0]
Typically offered: Spring Odd Year
Introduction to software, technology/applications in virtual/augmented reality, 3D user interaction. Overview of current research. Hands-on projects. prereq: 4611 or 5607 or 5115 or equiv or instr consent
CSCI 5707 - Principles of Database Systems
Credits: 3.0 [max 3.0]
Course Equivalencies: CSci 4707/CSci 5707/INET 4707
Typically offered: Every Fall
Concepts, database architecture, alternative conceptual data models, foundations of data manipulation/analysis, logical data models, database designs, models of database security/integrity, current trends. prereq: [4041 or instr consent], grad student
CSCI 5708 - Architecture and Implementation of Database Management Systems
Credits: 3.0 [max 3.0]
Typically offered: Every Spring
Techniques in commercial/research-oriented database systems. Catalogs. Physical storage techniques. Query processing/optimization. Transaction management. Mechanisms for concurrency control, disaster recovery, distribution, security, integrity, extended data types, triggers, and rules. prereq: 4707 or 5707 or instr consent
CSCI 5715 - From GPS, Google Maps, and Uber to Spatial Data Science
Credits: 3.0 [max 3.0]
Typically offered: Spring Even Year
Spatial databases and querying, spatial big data mining, spatial data-structures and algorithms, positioning, earth observation, cartography, and geo-visulization. Trends such as spatio-temporal, and geospatial cloud analytics, etc. prereq: Familiarity with Java, C++, or Python
CSCI 5801 - Software Engineering I
Credits: 3.0 [max 3.0]
Prerequisites: 2041 or #
Typically offered: Every Fall
Advanced introduction to software engineering. Software life cycle, development models, software requirements analysis, software design, coding, maintenance. prereq: 2041 or instr consent
CSCI 5980 - Special Topics in Computer Science
Credits: 1.0 -3.0 [max 27.0]
Typically offered: Periodic Fall & Spring
Lectures and informal discussions on current topics in computer science. prereq: instr consent; may be repeated for cr
CSCI 8970 - Computer Science Colloquium
Credits: 1.0 [max 1.0]
Grading Basis: S-N or Aud
Typically offered: Every Fall & Spring
Recent developments in computer science and related disciplines. Students must attend 13 of the 15 lectures.