Twin Cities campus
 
Twin Cities Campus

Chemistry M.S.

Chemistry
College of Science and Engineering
Link to a list of faculty for this program.
Contact Information
Assistant to the Director of Graduate Studies, Department of Chemistry, University of Minnesota, 137 Smith Hall, 207 Pleasant St SE, Minneapolis, MN 55455 (612-626-7444 or 1-800-777-2431; fax: 612-626-7541)
  • Program Type: Master's
  • Requirements for this program are current for Fall 2020
  • Length of program in credits: 30
  • This program does not require summer semesters for timely completion.
  • Degree: Master of Science
Along with the program-specific requirements listed below, please read the General Information section of this website for requirements that apply to all major fields.
While modern research in chemistry is very interdisciplinary, graduate work in the Department of Chemistry falls broadly into the focus areas of analytical chemistry, chemical biology, environmental chemistry, inorganic chemistry, materials chemistry, organic chemistry, polymer chemistry, experimental physical chemistry, and computational chemistry.
Program Delivery
  • via classroom (the majority of instruction is face-to-face)
Prerequisites for Admission
The preferred undergraduate GPA for admittance to the program is 3.20.
An undergraduate degree in chemistry or a related field is required for admission.
Other requirements to be completed before admission:
Applicants must offer the substantial equivalent of the courses in analytical, inorganic, organic, and physical chemistry that are required of undergraduate majors in the University of Minnesota chemistry curriculum. They must also have at least one year of college physics, plus college mathematics through calculus. Scores from the GRE general test are required for international applicants. A Subject GRE score is not required but is strongly recommended. The Subject GRE can be taken in chemistry or a related discipline.
Special Application Requirements:
Applications for fall semester must be completed by December 1 in order to be considered for fellowship support and teaching and research assistantships. Applications received after December 1 will be reviewed on a space available basis. The department prefers to admit for fall semester and will only consider spring admission under extenuating circumstances.
Applicants must submit their test score(s) from the following:
  • GRE
International applicants must submit score(s) from one of the following tests:
  • TOEFL
    • Internet Based - Total Score: 95
    • Internet Based - Speaking Score: 23
  • IELTS
    • Total Score: 7.0
  • MELAB
    • Final score: 83
Key to test abbreviations (GRE, TOEFL, IELTS, MELAB).
For an online application or for more information about graduate education admissions, see the General Information section of this website.
Program Requirements
Plan A: Plan A requires 20 major credits, 0 credits outside the major, and 10 thesis credits. The final exam is oral.
Plan B: Plan B requires 30 major credits and 0 credits outside the major. The final exam is written. A capstone project is required.
Capstone Project:Each Plan B project should involve a combined total of approximately 160 hours (the equivalent of four full-time weeks) of library research, reading, and/or writing resulting in the preparation of a significant written document. Students who plan to work on Plan B projects independent of the Preliminary Examination should present a plan, after consultation with the chosen instructor for the Plan B project, outlining the number and content of their projects to the director of graduate studies. Projects should be completed to the satisfaction of the instructor; the final grade is determined by the instructor.
Plan C: Plan C requires 30 major credits and 0 credits outside the major. There is no final exam.
This program may be completed with a minor.
Use of 4xxx courses toward program requirements is permitted under certain conditions with adviser approval.
A minimum GPA of 2.80 is required for students to remain in good standing.
Courses must be taken on the A/F grade basis, unless only offered S/N, with a minimum grade of B- earned for each course. All CHEM courses must be taken at the 5xxx or 8xxx level. A maximum of 8 credits in 4xxx-level courses from another department may be used with approval from the director of graduate studies. All first-year students must register for CHEM 8601 during both fall and spring semesters and for CHEM 8066 during the spring semester of their first year in residence.
Major Courses (20-30 credits)
Plan A students select 20 credits, Plan B students select 22 credits, and Plan C students select 30 credits from the following list. Other courses may be applied to this requirement with advisor approval. Students may count one credit each of CHEM 8066 and CHPH 8601 towards degree requirements.
CHEM 5210 - Materials Characterization (4.0 cr)
CHEM 5755 - X-Ray Crystallography (4.0 cr)
CHEM 8011 - Mechanisms of Chemical Reactions (4.0 cr)
CHEM 8021 - Computational Chemistry (4.0 cr)
CHEM 8066 - Professional Conduct of Chemical Research (1.0 cr)
CHEM 8151 - Analytical Separations and Chemical Equilibria (4.0 cr)
CHEM 8152 - Analytical Spectroscopy (4.0 cr)
CHEM 8153 - Extracting Signal From Noise (5.0 cr)
CHEM 8155 - Advanced Electroanalytical Chemistry (4.0 cr)
CHEM 8157 - Bioanalytical Chemistry (4.0 cr)
CHEM 8159 - Nuclear Magnetic Resonance Spectroscopy (4.0 cr)
CHEM 8180 - Special Topics in Analytical Chemistry (2.0-4.0 cr)
CHEM 8201 - Materials Chemistry (4.0 cr)
CHEM 8211 - Physical Polymer Chemistry (4.0 cr)
CHEM 8221 - Synthetic Polymer Chemistry (4.0 cr)
CHEM 8280 - Special Topics in Materials Chemistry (2.0-4.0 cr)
CHEM 8321 - Organic Synthesis (4.0 cr)
CHEM 8322 - Advanced Organic Chemistry (4.0 cr)
CHEM 8352 - Physical Organic Chemistry (4.0 cr)
CHEM 8361 - Interpretation of Organic Spectra (4.0 cr)
CHEM 8380 - Special Topics in Organic Chemistry (1.0-4.0 cr)
CHEM 8411 - Introduction to Chemical Biology (4.0 cr)
CHEM 8412 - Chemical Biology of Enzymes (4.0 cr)
CHEM 8413 - Nucleic Acids (4.0 cr)
CHEM 8480 - Special Topics in Biological Chemistry (2.0-4.0 cr)
CHEM 8541 - Dynamics (4.0 cr)
CHEM 8551 - Quantum Mechanics I (4.0 cr)
CHEM 8552 - Quantum Mechanics II (2.0 cr)
CHEM 8561 - Thermodynamics, Statistical Mechanics, and Reaction Dynamics I (4.0 cr)
CHEM 8562 - Thermodynamics, Statistical Mechanics, and Reaction Dynamics II (4.0 cr)
CHEM 8563 - Molecular Simulations (2.0 cr)
CHEM 8564 - Laser Spectroscopy (2.0 cr)
CHEM 8565 - Chemical Reaction Dynamics (2.0 cr)
CHEM 8566 - Spin Dynamics (2.0 cr)
CHEM 8567 - Biophysical Chemistry (2.0 cr)
CHEM 8568 - Chemical Bonding at Surfaces (2.0 cr)
CHEM 8569 - Electronic Structure (2.0 cr)
CHEM 8580 - Special Topics in Physical Chemistry (2.0-4.0 cr)
CHEM 8601 - Seminar: Modern Problems in Chemistry (1.0 cr)
CHEM 8700 - Advanced Concepts in Medicinal Chemistry: Combinatorial Methods in Chemical Biology (2.0 cr)
CHEM 8715 - Physical Inorganic Chemistry (4.0 cr)
CHEM 8725 - Organometallic Chemistry (4.0 cr)
CHEM 8735 - Bioinorganic Chemistry (4.0 cr)
CHEM 8745 - Advanced Inorganic Chemistry (4.0 cr)
CHEM 8780 - Special Topics in Inorganic Chemistry (2.0-4.0 cr)
CHEM 8880 - Special Topics in Chemistry (2.0-4.0 cr)
Plan Options
Plan A
Take 10 master's thesis credits.
CHEM 8777 - Thesis Credits: Master's (1.0-18.0 cr)
-OR-
Plan B (8 credits)
Take the following project courses:
CHEM 8081 - M.S. Plan B Project I (1.0-4.0 cr)
CHEM 8082 - M.S. Plan B Project II (1.0-4.0 cr)
-OR-
Plan C
 
More program views..
View college catalog(s):
· College of Science and Engineering

View PDF Version:
Search.
Search Programs

Search University Catalogs
Related links.

College of Science and Engineering

Graduate Admissions

Graduate School Fellowships

Graduate Assistantships

Colleges and Schools

One Stop
for tuition, course registration, financial aid, academic calendars, and more
 
CHEM 5210 - Materials Characterization
Credits: 4.0 [max 4.0]
Typically offered: Every Spring
Modern tools/techniques for both bulk- and thin-film characterization. Topics may include ion-solid interactions, Rutherford back scattering, secondary ion mass spectrometry, solid-state NMR, x-ray photoelectron spectroscopy, small-angle x-ray/neutron scattering, transmission/scanning electron/probe microscopy, near-field scanning optical microscopy, porosimetry, adsorption techniques, and ellipsometry. prereq: grad student or instr consent
CHEM 5755 - X-Ray Crystallography
Credits: 4.0 [max 4.0]
Grading Basis: A-F or Aud
Typically offered: Every Spring
Essentials of crystallography as applied to modern, single crystal X-ray diffraction methods. Practical training in use of instrumentation in X-ray crystallography facility in Department of Chemistry. Date collection, correction/refinement, structure solutions, generation of publication materials, use of Cambridge Crystallographic Structure Database. prereq: Chem grad student or instr consent
CHEM 8011 - Mechanisms of Chemical Reactions
Credits: 4.0 [max 4.0]
Typically offered: Every Fall
Reaction mechanisms and methods of study. Mechanistic concepts in chemistry. Gas phase reactions to mechanisms, "electron pushing" mechanisms in organic reactions, mechanism of enzymatic reactions. Kinetic schemes and other strategies to investigate mechanisms. prereq: 2302 or equiv
CHEM 8021 - Computational Chemistry
Credits: 4.0 [max 4.0]
Typically offered: Every Spring
Modern theoretical methods used in study of molecular structure, bonding, reactivity. Concepts/practical applications. Determination of spectra, relationship to experimental techniques. Molecular mechanics. Critical assessment of reliability of methods. prereq: 4502 or equiv
CHEM 8066 - Professional Conduct of Chemical Research
Credits: 1.0 [max 1.0]
Grading Basis: S-N or Aud
Typically offered: Every Fall & Spring
Builds sensitivity to ethical issues in chemical research. Readings/case studies, small-group/large-group discussion, summarizing comments from instructors/guests/panels having special expertise. Weekly seminar. prereq: Chem grad student
CHEM 8151 - Analytical Separations and Chemical Equilibria
Credits: 4.0 [max 4.0]
Typically offered: Every Fall & Spring
Advanced treatment of principles of analytical chemistry, chemical equilibria, and dynamics. Chromotographic and other modern analytical scale separation techniques. Emphasizes column dynamics and retention mechanisms. prereq: instr consent
CHEM 8152 - Analytical Spectroscopy
Credits: 4.0 [max 4.0]
Typically offered: Every Fall
Survey of analytical spectroscopic methods. Design/application of spectroscopic instruments, including signal generation, acquisition, and interpretation. May include nuclear magnetic resonance, electron paramagnetic resonance, infrared and ultraviolet/visible spectroscopy, and mass spectrometry. prereq: grad chem major or instr consent
CHEM 8153 - Extracting Signal From Noise
Credits: 5.0 [max 5.0]
Grading Basis: A-F or Aud
Typically offered: Every Spring
Use of analog/digital electronics and computational methods in experiments. Passive circuits, operational amplifiers, filters, oscillators and Laplace transform techniques in analysis, domain conversion for data acquisition/control, statistics, experimental design. Introduction to chemometrics, Fourier analysis, convolution/deconvolution, curve fitting. prereq: [4101 or equiv], differential equations course
CHEM 8155 - Advanced Electroanalytical Chemistry
Credits: 4.0 [max 4.0]
Typically offered: Every Spring
Thermodynamics/kinetics of electron/ion transfer, electric double layer, mass transfer by diffusion/migration. Ion-selective potentiometry, chronoamperometry, chronocoulometry, cyclic voltammetry, pulse voltammetry, ion-transfer voltammetry, impedance spectroscopy, bioelectroanalysis, rotating disk electrodes, microelectrodes, chemically modified electrodes. Scanning electrochemical microscopy. EC-STM, quartz crystal microbalance.
CHEM 8157 - Bioanalytical Chemistry
Credits: 4.0 [max 4.0]
Grading Basis: A-F or Aud
Typically offered: Periodic Spring
Theory and practical aspects of analytical methods used in determination/characterization of biologically important materials. Enzymatic/kinetic methods in study of proteins, carbohydrates, lipids, and nucleic acids.
CHEM 8159 - Nuclear Magnetic Resonance Spectroscopy
Credits: 4.0 [max 4.0]
Typically offered: Periodic Fall
Detailed understanding of relaxation processes, chemical exchange, quadrupolar effects, NOW, 2D NMR, NMR hardware, and solid state NMR. NMR imaging and Pulsed Field Gradient (PFG) NMR are discussed. prereq: Sem of organic chem
CHEM 8180 - Special Topics in Analytical Chemistry
Credits: 2.0 -4.0 [max 4.0]
Typically offered: Periodic Fall
Topics (and availability) vary by year depending on instructor and development of the field. prereq: Grad chem major or instr consent
CHEM 8201 - Materials Chemistry
Credits: 4.0 [max 4.0]
Course Equivalencies: Chem 5201/8201
Grading Basis: A-F or Aud
Typically offered: Every Fall
Crystal systems/unit cells, phase diagrams, defects/interfaces, optical/ dielectric properties, electrical/thermal conductivity, X-ray diffraction, thin film analysis, electronic structure, polarons/phonons, solid state chemistry, liquid/molecular crystals, polymers, magnetic/optical materials, porous materials, ceramics, piezoelectric materials, biomedical materials, catalysts. prereq: [4701, 3502] or instr consent
CHEM 8211 - Physical Polymer Chemistry
Credits: 4.0 [max 4.0]
Course Equivalencies: 00620
Typically offered: Every Spring
Chain conformations. Thermodynamics of polymer solutions, blends, and copolymers. Light, neutron, and X-ray scattering. Dynamics in dilute solution and polymer characterization and in melts and viscoelasticity. Rubber elasticity, networks, gels. Glass transition. crystallization. prereq: Undergrad physical chem course
CHEM 8221 - Synthetic Polymer Chemistry
Credits: 4.0 [max 4.0]
Course Equivalencies: 00295
Typically offered: Every Fall
Condensation, radical, ionic, emulsion, ring-opening, metal-catalyzed polymerizations. Chain conformation, solution thermodynamics, molecular weight characterization, physical properties. prereq: [Undergrad organic chemistry course, undergrad physical chemistry course] or instr consent
CHEM 8280 - Special Topics in Materials Chemistry
Credits: 2.0 -4.0 [max 4.0]
Typically offered: Periodic Fall & Spring
Topics (and availability) vary by year depending on instructor and development of the field. prereq: Grad chem major or instr consent
CHEM 8321 - Organic Synthesis
Credits: 4.0 [max 4.0]
Typically offered: Every Fall
Core course; fundamental concepts, reactions, reagents, structural and stereochemical issues, and mechanistic skills necessary for understanding organic chemistry. prereq: 2302 or equiv
CHEM 8322 - Advanced Organic Chemistry
Credits: 4.0 [max 4.0]
Typically offered: Every Spring
Modern studies. Topics, which vary by year, include natural products, heterocycles, asymmetric synthesis, organometallic chemistry, and polymer chemistry. prereq: 2302 or equiv
CHEM 8352 - Physical Organic Chemistry
Credits: 4.0 [max 4.0]
Typically offered: Every Spring
Fundamental concepts, mechanistic tools for analyzing organic reaction mechanisms. Solvation, reactive intermediates, gas phase chemistry, photochemistry, strained-ring chemistry. prereq: 4011 or 8011
CHEM 8361 - Interpretation of Organic Spectra
Credits: 4.0 [max 4.0]
Typically offered: Every Fall
Practical application of nuclear magnetic resonance, mass, ultraviolet, and infrared spectral analyses to solution of organic structural problems. prereq: 2302 or equiv
CHEM 8380 - Special Topics in Organic Chemistry
Credits: 1.0 -4.0 [max 4.0]
Typically offered: Periodic Spring
Topics (and availability) vary by year depending on instructor and development of the field. prereq: grad chem major or instr consent
CHEM 8411 - Introduction to Chemical Biology
Credits: 4.0 [max 4.0]
Typically offered: Every Fall
Chemistry of amino acids, peptides, proteins, lipids, carbohydrates, and nucleic acids. Structure, nomenclature, synthesis, and reactivity. Overview of techniques used to characterize these biomolecules. prereq: 2302 or equiv
CHEM 8412 - Chemical Biology of Enzymes
Credits: 4.0 [max 4.0]
Course Equivalencies: Chem/MedC 8412
Typically offered: Periodic Spring
Enzyme classification with representative examples from current literature. Strategies used to decipher enzyme mechanisms. Chemical approaches for control of enzyme catalysis. prereq: 2302 or equiv
CHEM 8413 - Nucleic Acids
Credits: 4.0 [max 4.0]
Course Equivalencies: Chem/MedC 8413
Typically offered: Periodic Fall
Chemistry and biology of nucleic acids: structure, thermodynamics, reactivity, DNA repair, chemical oligonucleotide synthesis, antisense approaches, ribozymes, overview of techniques used in nucleic acid research, interactions with small molecules and proteins. prereq: 2302 or equiv
CHEM 8480 - Special Topics in Biological Chemistry
Credits: 2.0 -4.0 [max 4.0]
Typically offered: Periodic Spring
Topics (and availability) vary by year, depending on instructor and development of the field. prereq: Grad chem major or instr consent
CHEM 8541 - Dynamics
Credits: 4.0 [max 4.0]
Course Equivalencies: Chem 5541/8541
Typically offered: Periodic Fall
Mathematical methods for physical chemistry. Classical mechanics/dynamics, normal modes of vibration. Special topics such as rotational motion, Langevin equation, Brownian motion, time correlation functions, collision theory, cross sections, energy transfer, molecular forces, potential energy surfaces, classical electrostatics, Shannon entropy. prereq: Undergrad physical chem course
CHEM 8551 - Quantum Mechanics I
Credits: 4.0 [max 4.0]
Course Equivalencies: Chem 5551/8551
Typically offered: Every Fall
Review of classical mechanics. Postulates of quantum mechanics with applications to determination of single particle bound state energies and scattering cross-sections in central field potentials. Density operator formalism with applications to description of two level systems, two particle systems, entanglement, and Bell inequality. prereq: undergrad physical chem course
CHEM 8552 - Quantum Mechanics II
Credits: 2.0 [max 4.0]
Typically offered: Every Spring
Second Quantization;Density matrices; Molecular Electronic Structure Theory; Hartree-Fock Theory; Electron Correlation; Configuration Interaction; Perturbation Theory; Energy Derivatives; Coupled-Cluster;Density Functional Theory; Relativistic Quantum Chemistry; prereq: 8551
CHEM 8561 - Thermodynamics, Statistical Mechanics, and Reaction Dynamics I
Credits: 4.0 [max 4.0]
Typically offered: Every Fall
Two-part sequence. Thermodynamics, equilibrium statistical mechanics, ensemble theory, partition functions. Applications, including ideal gases/crystals. Theories of simple liquids, Monte Carlo, and molecular dynamics simulations. Reaction dynamics from microscopic viewpoint. prereq: undergrad physical chem course
CHEM 8562 - Thermodynamics, Statistical Mechanics, and Reaction Dynamics II
Credits: 4.0 [max 4.0]
Typically offered: Every Spring
Two-part sequence. Thermodynamics, equilibrium statistical mechanics, ensemble theory, partition functions. Applications, including ideal gases/crystals. Theories of simple liquids, Monte Carlo, and molecular dynamics simulations. Reaction dynamics from microscopic viewpoint. prereq: 8561
CHEM 8563 - Molecular Simulations
Credits: 2.0 [max 2.0]
Typically offered: Every Spring
Principles of Monte Carlo/molecular dynamics simulations. Algorithms, simulation set-up/analysis, applications to chemical systems. Hands-on computational project that requires writing of computer code. prereq: grad chem major or instr consent
CHEM 8564 - Laser Spectroscopy
Credits: 2.0 [max 2.0]
Typically offered: Every Spring
Fundamentals of light-molecule interactions/manifestation in spectroscopic observables. Time correlation functions, spectroscopic lineshapes, linear/nonlinear material responses, material susceptibilities. Role of lasers in measuring quantities. prereq: grad chem major or instr consent
CHEM 8565 - Chemical Reaction Dynamics
Credits: 2.0 [max 2.0]
Typically offered: Periodic Spring
Fundamentals of chemical reaction dynamics including potential energy surfaces, collision theory, statistical mechanical background and transition state theory, variational transition state theory, activation energy, tunneling, unimolecular reactions, energy transfer, reactions in solution, solvation free energy, potential of mean force, quasithermodynamic treatment, reactions in solution, diffusion control, Kramers’ theory, and photochemistry
CHEM 8566 - Spin Dynamics
Credits: 2.0 [max 2.0]
Typically offered: Periodic Spring
Chemistry 8566 is a 1/2-semester course on spin dynamics. The course prerequisites are described in the CSE Bulletin. Briefly, they are: one year of college-level chemistry, one year of college-level physics, and one year of college-level calculus. All of the prerequisites should have been completed before enrollment in this course. Students who do not satisfy the course prerequisites, please contact the instructor.
CHEM 8567 - Biophysical Chemistry
Credits: 2.0 [max 2.0]
Typically offered: Periodic Spring
CHEM 8567 is a graduate level course which emphasizes how macromolecular and membrane structure and dynamics impact biological function. Topics to be covered include high-resolution structure determination, biomolecular spectroscopy, and microscopy as applied to folding, solvation, and reaction dynamics. The objectives for this course are to become well-versed in the language of biophysics, at a level sufficient to understand and critically evaluate the literature and to understand fundamental concepts related to structure determination and structure-function relationships of biomolecules, and to be able to apply those concepts to a variety of biological systems.
CHEM 8568 - Chemical Bonding at Surfaces
Credits: 2.0 [max 2.0]
Typically offered: Periodic Spring
A brief overview of surface science, chemical reactions at surfaces, and interactions of surfaces with light. Students will also be exposed to physical principles of chemical reactions such as transition-state theory and kinetics in within the framework of surface science.
CHEM 8569 - Electronic Structure
Credits: 2.0 [max 2.0]
Typically offered: Periodic Spring
This course covers electronic structure theory applied to atoms and molecules and includes a hands-on computational project that requires writing of computer code. It will cover Hartree-Fock theory, Density Functional Theory, electron correlation theories, relativistic effects, and other related topics.
CHEM 8580 - Special Topics in Physical Chemistry
Credits: 2.0 -4.0 [max 8.0]
Typically offered: Periodic Spring
Topics (and availability) vary depending on instructor and development of the field. prereq: grad chem major or instr consent
CHEM 8601 - Seminar: Modern Problems in Chemistry
Credits: 1.0 [max 1.0]
Grading Basis: S-N or Aud
Typically offered: Every Fall & Spring
Weekly seminar series on modern chemical topics. prereq: grad chem major or instr consent
CHEM 8700 - Advanced Concepts in Medicinal Chemistry: Combinatorial Methods in Chemical Biology
Credits: 2.0 [max 2.0]
Course Equivalencies: Chem 8700/MedC 8700/Phar 6246H
Grading Basis: A-F or Aud
Typically offered: Periodic Fall
Principles of current combinatorial methods for generation of biological/chemical libraries. Emphasizes utility in biology and in drug design. Material is drawn from primary literature. prereq: [2302 or equiv], [BioC 4331 or equiv]
CHEM 8715 - Physical Inorganic Chemistry
Credits: 4.0 [max 4.0]
Typically offered: Every Fall
Physical methods and concepts applied to inorganic and organometallic systems, including many of the following methods: NMR, IR, UV-VIS, ESR, M[ö]ssbauer and mass spectroscopy, magnetic measurements, X-ray diffraction. prereq: 4701 or equiv, grad chem major or instr consent
CHEM 8725 - Organometallic Chemistry
Credits: 4.0 [max 4.0]
Typically offered: Periodic Fall
Synthesis, reactions, structures, and other important properties of main group and transition metal organometallic compounds; treatment in terms of modern electronic and structural theory; emphasis on their use as stoichiometric and homogeneous catalytic reagents in organic and inorganic systems. prereq: 4701 or equiv, grad chem major or instr consent
CHEM 8735 - Bioinorganic Chemistry
Credits: 4.0 [max 4.0]
Typically offered: Periodic Fall
Survey of role of metal ions in biology; emphasizes structure, function, and spectroscopy of metalloproteins and their synthetic analogs. prereq: 4701 or equiv, grad chem major or instr consent
CHEM 8745 - Advanced Inorganic Chemistry
Credits: 4.0 [max 4.0]
Typically offered: Periodic Spring
Survey of topics in main group and transition metal chemistry; emphasizes synthesis, structure, physical properties, and chemical reactivity. prereq: 8715, grad chem major or instr consent
CHEM 8780 - Special Topics in Inorganic Chemistry
Credits: 2.0 -4.0 [max 4.0]
Typically offered: Periodic Fall
Topics (and availability) vary by year depending on instructor and development of the field. prereq: Grad chem major or instr consent
CHEM 8880 - Special Topics in Chemistry
Credits: 2.0 -4.0 [max 4.0]
Typically offered: Every Spring
Topics (and availability) vary depending on instructor and development of the field. prereq: Grad chem major or instr consent
CHEM 8777 - Thesis Credits: Master's
Credits: 1.0 -18.0 [max 50.0]
Grading Basis: No Grade
Typically offered: Every Fall, Spring & Summer
(No description) prereq: Max 18 cr per semester or summer; 10 cr total required [Plan A only]
CHEM 8081 - M.S. Plan B Project I
Credits: 1.0 -4.0 [max 4.0]
Grading Basis: A-F or Aud
Typically offered: Every Fall, Spring & Summer
Satisfies project requirement for Plan B master's degree. May appear on M.S. degree program, but does not count toward 14-credit minimum in major field. Topic arranged by student adviser; written report required. 8081 required; 8082 optional. prereq: grad chem major
CHEM 8082 - M.S. Plan B Project II
Credits: 1.0 -4.0 [max 4.0]
Grading Basis: A-F or Aud
Typically offered: Every Fall, Spring & Summer
Satisfies project requirement for Plan B master's degree. May appear on M.S. degree program, but does not count toward 14-credit minimum in major field. Topic arranged by student adviser; written report required. 8081 required; 8082 optional. prereq: grad chem major