Twin Cities campus

This is archival data. This system was retired as of August 21, 2023 and the information on this page has not been updated since then. For current information, visit catalogs.umn.edu.

 
Twin Cities Campus

Biochemistry, Molecular Biology and Biophysics Ph.D.

Biochemistry, Molecular Biology, & Biophysics TCBS
Graduate School
Link to a list of faculty for this program.
Contact Information
Department of Biochemistry, Molecular Biology and Biophysics 6-155 Jackson Hall 321 Church St. SE Minneapolis, MN 55455 612-625-6100
  • Program Type: Doctorate
  • Requirements for this program are current for Fall 2017
  • Length of program in credits: 48
  • This program requires summer semesters for timely completion.
  • Degree: Doctor of Philosophy
Along with the program-specific requirements listed below, please read the General Information section of this website for requirements that apply to all major fields.
The Biochemistry, Molecular Biology and Biophysics (BMBB) graduate program is an interdisciplinary program that is supported by the College of Biological Sciences (CBS) and the Medical School of the University of Minnesota. The program provides a broad research-based education involving faculty from BMBB as well as many faculty members from several other departments in CBS, the Medical School, the College of Science and Engineering (CSE), the College of Food, Agricultural and Natural Resources Sciences (CFANS), and the College of Veterinary Medicine. BMBB focuses on determining the molecular mechanisms that underlie basic biological functions using an integrated approach that encompasses biochemistry, chemistry, biophysics, genomics, molecular biology, proteomics, and structural biology. Special emphasis is placed on revealing how biological processes go awry in diseases including cancer, diabetes, heart disease, and AIDS. The program has four areas of emphasis: synthetic biology and biotechnology, molecular biology, metabolic and systems biology, and chemical and structural biology. All students are expected to demonstrate a minimum level of competence in these areas but will emphasize the area most related to their thesis project. While graduate training in a BMBB laboratory involves first-year coursework and associated preliminary examinations, the focal point for graduate education is thesis research. Laboratory-based exploration coupled with journal clubs, seminars, scientific meetings and retreats, career counseling and scientific ethics constitutes the major components of the program. Support for graduate education comes from a variety of sources but is augmented by several NIH and NSF-based training grants. PhD graduates from the University of Minnesota obtain full-time employment immediately after graduation or pursue advanced training in academic or corporate postdoctoral positions. Students pursuing the PhD are admitted to BMBB under the auspices of Molecular, Cellular and Structural Biology (MCSB), a first year program administered by BMBB and the Molecular, Cellular, Developmental Biology and Genetics (MCDB&G) graduate programs. After the first year, students select either BMBB or MCDB&G to complete their degree. Related PhD and MS programs in BMBB: As a part of the BMBB program, graduate studies leading to a PhD degree may be pursued on the Duluth campus. A PhD in BMBB may also be obtained through the Combined MD-PhD program. Please visit the program website for more information (http://www.med.umn.edu/mdphd/index.htm). Note: One cannot apply for admission to the master's degree in BMBB. Students are only admitted to the BMBB PhD program. Alternative, related master's degree programs that admit students are the master's of biological sciences (MBS) (http://cce.umn.edu/master-of-biological-sciences) and the master's in microbial engineering (http://bti.umn.edu/MicE/).
Program Delivery
  • via classroom (the majority of instruction is face-to-face)
Prerequisites for Admission
The program can accommodate for a variety of educational backgrounds. However, applications from students with an undergraduate degree in the biological, chemical, or physical sciences are encouraged.
The program can accommodate for a variety of educational backgrounds. However, applications from students with an advanced degree in the biological, chemical, or physical sciences are encouraged.
Other requirements to be completed before admission:
Recommended academic preparation includes one year each of calculus, organic chemistry, and basic biology, including biochemistry and genetics. For students of demonstrated ability, background deficiencies can be made up during the first year of graduate study. Successful applicants must have previous research experience in an academic or industrial setting in addition to any course-related laboratory experiences. It is important to demonstrate an aptitude for basic science research prior to embarking on a graduate career in this program.
Special Application Requirements:
Additionally, applicants must submit three letters of recommendation from persons familiar with their academic and research capabilities. A statement of interests and goals, and a complete set of transcripts are required. The deadline to submit a completed application is December 1. Completed files are reviewed between January and February. Graduate studies begin fall semester only. Related Ph.D. and M.S. Programs in BMBB: As a part of the BMBB program, graduate studies leading to a PhD degree may be pursued on the Duluth Campus. A PhD in BMBB may also be obtained through the Combined MD-PhD Program. Please visit the program website for more information (http://www.med.umn.edu/mdphd/index.htm). Note: One cannot apply for admission to the master's degree in BMBB. Students are only admitted to the BMBB PhD program. Alternative, related master's degree programs that admit students are the Master of Biological Sciences (MBS) (http://cce.umn.edu/master-of-biological-sciences) and the Master in Microbial Engineering (http://bti.umn.edu/MicE/).
For an online application or for more information about graduate education admissions, see the General Information section of this website.
Program Requirements
24 credits are required in the major.
0 credits are required outside the major.
24 thesis credits are required.
This program may not be completed with a minor.
Use of 4xxx courses towards program requirements is not permitted.
A minimum GPA of 3.00 is required for students to remain in good standing.
Requirements include core coursework, thesis credits, and laboratory experiences, as well as coursework in one of the four BMBB empahses listed below. Additional requirements for the PhD degree include seminar presentations, examinations, and teaching assignments. BIOC 8084 is a weekly student seminar on current literature and research, and students must register for 1 credit of BIOC 8084 each term until they have reached advanced doctoral status. BIOC 8184 is a departmental seminar involving prominent national and international scientists. Students must attend at least 50% of weekly meetings for BIOC 8084 and BIOC 8184. Students are also required to complete two semesters of teaching, typically between years 2 to 4.
Biochemistry Core Coursework (3 Credits)
Complete the following core courses. MCDBG 8920 must be taken for two credits.
BIOC 8401 - Ethics, Public Policy, and Careers in Molecular and Cellular Biology (1.0 cr)
MCDG 8920 - Special Topics (1.0-4.0 cr)
Complete six credits, in consultation with the director of graduate studies, from the following list:
BIOC 5535 - Introduction to Modern Structural Biology -- Diffraction (2.0 cr)
BIOC 5536 - Introduction to Modern Structural Biology - Nuclear Magnetic Resonance (2.0 cr)
BIOC 8005 - Biochemistry: Structure and Catalysis (2.0 cr)
BIOC 8006 - Biochemistry: Metabolism and Control (2.0 cr)
BIOC 8007 - Molecular Biology of the Genome (2.0 cr)
BIOC 8008 - Molecular Biology of the Transcriptome (2.0 cr)
Emphasis Electives (15 Credits)
Complete 15 credits of coursework in one of the four BMBB empahses: synthetic biology and biotechnology, molecular biology, metabolic and systems biology, or chemical and structural biology. Courses from disciplines other than BMBB may be used to build an emphasis in consultation with the advisor.
Take 15 or more credit(s) from the following:
· BIOC 5352 - Biotechnology and Bioengineering for Biochemists (3.0 cr)
· BIOC 5361 - Microbial Genomics and Bioinformatics (3.0 cr)
· MICA 8002 - Structure, Function, and Genetics of Bacteria and Viruses (4.0 cr)
· GCD 8151 - Cellular Biochemistry and Cell Biology (2.0-4.0 cr)
· MICA 8003 - Immunity and Immunopathology (4.0 cr)
· MICA 8004 - Cellular and Cancer Biology (4.0 cr)
· GCD 8131 - Advanced Molecular Genetics and Genomics (3.0 cr)
· GCD 8008 - Mammalian Gene Transfer and Genome Engineering (2.0 cr)
· PUBH 6450 - Biostatistics I (4.0 cr)
· SCB 8181 - Stem Cell Biology (3.0 cr)
· STAT 5021 - Statistical Analysis (4.0 cr)
· MICA 8010 - Microbial Pathogenesis (3.0 cr)
· BIOC 5216 - Current Topics in Signal Transduction (2.0 cr)
· BIOC 5527 {Inactive} (4.0 cr)
· BIOC 5528 - Spectroscopy and Kinetics (4.0 cr)
· CHEN 8754 - Systems Analysis of Biological Processes (3.0 cr)
· BIOC 5213 {Inactive} (3.0 cr)
· BIOC 5444 - Muscle (3.0 cr)
· CHEM 8011 - Mechanisms of Chemical Reactions (4.0 cr)
· CHEM 8021 - Computational Chemistry (4.0 cr)
· CHEM 8411 - Introduction to Chemical Biology (4.0 cr)
· CHEM 8412 - Chemical Biology of Enzymes (4.0 cr)
· CHEM 8735 - Bioinorganic Chemistry (4.0 cr)
· PHCL 5111 - Pharmacogenomics (3.0 cr)
· PUBH 7445 - Statistics for Human Genetics and Molecular Biology (3.0 cr)
· MICA 8013 - Translational Cancer Research (2.0 cr)
· GRAD 8101 - Teaching in Higher Education (3.0 cr)
· GRAD 8200 - Teaching and Learning Topics in Higher Education (1.0 cr)
· BIOC 5309 - Biocatalysis and Biodegradation (3.0 cr)
· BIOC 5351 - Protein Engineering (3.0 cr)
· CSCI 5461 - Functional Genomics, Systems Biology, and Bioinformatics (3.0 cr)
· GRAD 5102 - Preparation for University Teaching for Nonnative English Speakers (2.0 cr)
· BIOC 8084 - Research and Literature Reports (1.0 cr)
· BIOC 8184 - Graduate Seminar (1.0 cr)
· BIOL 8100 - Improvisation for Scientists (1.0 cr)
· GCD 5005 - Computer Programming for Biology (3.0 cr)
Thesis Credits
Take 24 doctoral thesis credits.
BIOC 8888 - Thesis Credit: Doctoral (1.0-24.0 cr)
Joint- or Dual-degree Coursework:
MD/PhD-Biochemistry, Molecular Biology and Biophysics Students may take a total of 18 credits in common among the academic programs.
 
More program views..
· Graduate School
View future requirement(s):
· Fall 2022
· Fall 2020
· Spring 2020

View PDF Version:
Search.
Search Programs

Search University Catalogs
Related links.

Graduate School

Graduate Admissions

Graduate School Fellowships

Graduate Assistantships

Colleges and Schools

One Stop
for tuition, course registration, financial aid, academic calendars, and more
 
BIOC 8401 - Ethics, Public Policy, and Careers in Molecular and Cellular Biology
Credits: 1.0 [max 2.0]
Course Equivalencies: Bioc 8401/GCD 8401
Grading Basis: S-N or Aud
Typically offered: Every Spring
Ethics of scientific investigation from viewpoint of western scientific enterprise. Relationship between science, culture, and public policies. Careers in molecular/cellular biology. Nontraditional career tracks. Invited speakers, case studies, small-group discussions, lectures. prereq: Grad student in [BMBB or MCDBconcurrent registration is required (or allowed) in G]
MCDG 8920 - Special Topics
Credits: 1.0 -4.0 [max 8.0]
Grading Basis: S-N only
Typically offered: Every Fall
Special Topics Course in the Molecular, Cellular, Developmental Biology and Genetics Program, including Itasca Research. prereq: Grad MCDG or BMBB major or dept consent
BIOC 5535 - Introduction to Modern Structural Biology -- Diffraction
Credits: 2.0 [max 2.0]
Course Equivalencies: BioC 5535/BioC 5527
Grading Basis: A-F or Aud
Typically offered: Every Fall
Theory and practice in the determination of three-dimensional structures of macromolecules using x-ray and neutron diffraction and electron microscopy. prereq: (Introductory biochemistry, introductory physics, college calculus] or physical chemistry or instr consent
BIOC 5536 - Introduction to Modern Structural Biology - Nuclear Magnetic Resonance
Credits: 2.0 [max 2.0]
Course Equivalencies: BioC 5527BioC 5536
Typically offered: Every Fall
Theory and practice in the determination of three-dimensional structures of macromolecules using NMR. Recommended prerequisite courses: (Introductory biochemistry, introductory physics, college calculus) or physical chemistry
BIOC 8005 - Biochemistry: Structure and Catalysis
Credits: 2.0 [max 2.0]
Grading Basis: A-F or Aud
Typically offered: Every Fall
Protein structure, methods to determine structure, protein folding, forces stabilizing macromolecular structure, protein engineering, design. Dynamic properties of proteins/enzymes, enzyme substrate complexes, mechanism of enzyme catalysis.
BIOC 8006 - Biochemistry: Metabolism and Control
Credits: 2.0 [max 2.0]
Grading Basis: A-F or Aud
Typically offered: Every Fall
Enzymology of metabolism, metabolic regulation, metabolic control and cell signaling.
BIOC 8007 - Molecular Biology of the Genome
Credits: 2.0 [max 2.0]
Grading Basis: A-F or Aud
Typically offered: Every Fall
This course explores the molecular biology of the eukaryotic genome and transcriptome, focusing on fundamental genetic processes, molecular mechanisms, and their relationships to biology and disease. Students gain a firm understanding of the key concepts and techniques through lectures, reading, and discussions. Students learn to critically analyze scientific papers through student-led presentations and discussions. They gain experience in articulating scientific questions, formulating testable hypotheses, and designing experiments. This course promotes development of science writing skills.
BIOC 8008 - Molecular Biology of the Transcriptome
Credits: 2.0 [max 2.0]
Grading Basis: A-F or Aud
Typically offered: Every Fall
This course explores the molecular biology of the eukaryotic genome and transcriptome, focusing on fundamental genetic processes, molecular mechanisms, and their relationships to biology and disease. Students gain a firm understanding of the key concepts and techniques through lectures, reading, and discussions. Students learn to critically analyze scientific papers through student-led presentations and discussions. They gain experience in articulating scientific questions, formulating testable hypotheses, and designing experiments. This course promotes development of science writing skills.
BIOC 5352 - Biotechnology and Bioengineering for Biochemists
Credits: 3.0 [max 3.0]
Course Equivalencies: BioC 5352/MicB 5352
Grading Basis: A-F or Aud
Typically offered: Periodic Spring
Protein biotechnology. Microorganisms used as hosts for protein expression, protein expression, and engineering methods. Production of enzymes of industrial interest. Applications of protein biotechnology in bioelectronics. Formulation of therapeutic biopharmaceuticals. Recommended prerequisites: Biochemistry (BiOC 3021 or 3022 or 4331) and Microbiology MICB 3301
BIOC 5361 - Microbial Genomics and Bioinformatics
Credits: 3.0 [max 3.0]
Typically offered: Every Fall & Spring
Introduction to genomics. Emphasizes microbial genomics. Sequencing methods, sequence analysis, genomics databases, genome mapping, prokaryotic horizontal gene transfer, genomics in biotechnology, intellectual property issues. Hands-on introduction to UNIX shell scripting, genomic data analysis using R and Excel in a computer lab setting. prereq: College-level courses in [organic chemistry, biochemistry, microbiology]
MICA 8002 - Structure, Function, and Genetics of Bacteria and Viruses
Credits: 4.0 [max 4.0]
Grading Basis: A-F or Aud
Typically offered: Every Fall
Structure, function, and metabolism of microorganisms. Microbial genetics. Molecular virology. prereq: [One undergrad or grad course each in [microbiology, genetics, biochemistry]] or instr consent
GCD 8151 - Cellular Biochemistry and Cell Biology
Credits: 2.0 -4.0 [max 4.0]
Grading Basis: A-F only
Typically offered: Every Fall
This course introduces graduate students to fundamental concepts of Biochemical Unity (Part 1) and Cell Theory (Part 2). For Part 1, we will discuss matter of life, equilibrium, entropy & law of mass action, two state systems, random walks & diffusion, rate equations of chemical reactions, and explore how they relate to regulation of biological networks (gene regulation and signal transduction). For Part 2 we will focus on properties of biological membranes, membrane trafficking, protein import & degradation, nuclear structures and their function, as well as molecular motors, cytoskeletal dynamics, and mitosis. The course assumes students have had previous undergraduate courses in cell biology, biochemistry and genetics. prereq: [[[4034 or 8121 or BioC 8002], Biol 4004] or BMBB or MCDBG grad student] or instr consent
MICA 8003 - Immunity and Immunopathology
Credits: 4.0 [max 4.0]
Typically offered: Every Fall
Lymphocyte activation, signal transduction in lymphocytes, antigen receptor genetics, antigen presentation, lymphoid anatomy, adaptive immune responses to microbes, immunodeficiency, immunopathology, cytokines, transplantation, autoimmunity. prereq: Upper level undergrad immunology course or instr consent
MICA 8004 - Cellular and Cancer Biology
Credits: 4.0 [max 4.0]
Grading Basis: A-F or Aud
Typically offered: Every Spring
Fundamental concepts in cellular, molecular, and genetic basis of disease. Molecular basis of inflammation and cancer metastasis. Genetic basis for inherited disorders and gene therapy. Molecular mechanisms of pathogenesis. prereq: [One undergrad or grad course each in [biochemistry, cell biology]] or instr consent
GCD 8131 - Advanced Molecular Genetics and Genomics
Credits: 3.0 [max 3.0]
Typically offered: Every Fall & Spring
Literature-based course in modern molecular genetic and genomic analysis. Students will gain a deep understanding of the fundamental molecular mechanisms controlling inheritance in biological systems. Students will gain a facility in thinking critically and creatively about how genes work at cellular, organismal, and transgenerational levels. Course instruction emphasizes active-learning approaches, student presentations, and group projects. prereq: [3022 or BIOL 4003], [BIOC 3021 or BIOC 4331] or instr consent
GCD 8008 - Mammalian Gene Transfer and Genome Engineering
Credits: 2.0 [max 2.0]
Grading Basis: A-F or Aud
Typically offered: Every Spring
Current gene transfer and genome engineering technology. Applications of genetic modifications in animals, particularly transgenic animals and human gene therapy. prereq: instr consent
PUBH 6450 - Biostatistics I
Credits: 4.0 [max 4.0]
Grading Basis: A-F only
Typically offered: Every Fall & Spring
This course will cover the fundamental concepts of exploratory data analysis and statistical inference for univariate and bivariate data, including: ? study design and sampling methods, ? descriptive and graphical summaries, ? random variables and their distributions, ? interval estimation, ? hypothesis testing, ? relevant nonparametric methods, ? simple regression/correlation, and ? introduction to multiple regression. There will be a focus on analyzing data using statistical programming software and on communicating the results in short reports. Health science examples from the research literature will be used throughout the course. prereq: [College-level algebra, health sciences grad student] or instr consent
SCB 8181 - Stem Cell Biology
Credits: 3.0 [max 3.0]
Course Equivalencies: GCD 8181/SCB 8181
Typically offered: Every Fall
Stem cell research and its applications. Critical analysis, written summaries/critiques, oral presentations. prereq: [[GCD 4034], [GCD 4161]] or equiv or instr consent
STAT 5021 - Statistical Analysis
Credits: 4.0 [max 4.0]
Typically offered: Every Fall & Spring
Intensive introduction to statistical methods for graduate students needing statistics as a research technique. prereq: college algebra or instr consent; credit will not be granted if credit has been received for STAT 3011
MICA 8010 - Microbial Pathogenesis
Credits: 3.0 [max 3.0]
Grading Basis: A-F or Aud
Typically offered: Fall Even Year
Molecular mechanisms of bacterial/viral pathogenesis. Strategies of disease causation/interaction with host, regulation of virulence factors, mechanism of virulence factor transmission to other microbes. prereq: MICa grad student or instr
BIOC 5216 - Current Topics in Signal Transduction
Credits: 2.0 [max 3.0]
Grading Basis: A-F only
Typically offered: Every Spring
Mechanisms by which biological signals evoke biochemical responses.
BIOC 5528 - Spectroscopy and Kinetics
Credits: 4.0 [max 4.0]
Typically offered: Every Spring
Biochemical dynamics from perspectives of kinetics and spectroscopy. Influence of structure, molecular interactions, and chemical transformations on biochemical reactions. Focuses on computational, spectroscopic, and physical methods. Steady-state and transient kinetics. Optical and magnetic resonance spectroscopies. prereq: Intro physical chemistry or equiv; intro biochemistry recommended
CHEN 8754 - Systems Analysis of Biological Processes
Credits: 3.0 [max 3.0]
Typically offered: Every Spring
Relating biological processes at molecular level to physiological level of cells/organisms/populations. Methodology for analyzing data. Quantification of molecular interplays. prereq: Grad student in [life sciences or chemical/physical sciences or engineering]; ChEn students must take A/F
BIOC 5444 - Muscle
Credits: 3.0 [max 3.0]
Course Equivalencies: BioC 5444/ Phsl 5444
Typically offered: Every Spring
Muscle molecular structure/function and disease. Muscle regulation, ion transport, and force generation. Muscular dystrophy and heart disease. prereq: 3021 or BIOL 3021 or 4331 or BIOL 4331 or PHSL 3061 or instr consent
CHEM 8011 - Mechanisms of Chemical Reactions
Credits: 4.0 [max 4.0]
Typically offered: Every Fall
Reaction mechanisms and methods of study. Mechanistic concepts in chemistry. Gas phase reactions to mechanisms, "electron pushing" mechanisms in organic reactions, mechanism of enzymatic reactions. Kinetic schemes and other strategies to investigate mechanisms. prereq: 2302 or equiv
CHEM 8021 - Computational Chemistry
Credits: 4.0 [max 4.0]
Typically offered: Every Spring
Modern theoretical methods used in study of molecular structure, bonding, reactivity. Concepts/practical applications. Determination of spectra, relationship to experimental techniques. Molecular mechanics. Critical assessment of reliability of methods. prereq: 4502 or equiv
CHEM 8411 - Introduction to Chemical Biology
Credits: 4.0 [max 4.0]
Typically offered: Every Fall
Chemistry of amino acids, peptides, proteins, lipids, carbohydrates, and nucleic acids. Structure, nomenclature, synthesis, and reactivity. Overview of techniques used to characterize these biomolecules. prereq: 2302 or equiv
CHEM 8412 - Chemical Biology of Enzymes
Credits: 4.0 [max 4.0]
Course Equivalencies: Chem 8412/MedC 8412
Typically offered: Periodic Spring
Enzyme classification with representative examples from current literature. Strategies used to decipher enzyme mechanisms. Chemical approaches for control of enzyme catalysis. prereq: 2302 or equiv
CHEM 8735 - Bioinorganic Chemistry
Credits: 4.0 [max 4.0]
Typically offered: Periodic Fall
Survey of role of metal ions in biology; emphasizes structure, function, and spectroscopy of metalloproteins and their synthetic analogs. prereq: 4701 or equiv, grad chem major or instr consent
PHCL 5111 - Pharmacogenomics
Credits: 3.0 [max 3.0]
Grading Basis: A-F or Aud
Typically offered: Every Spring
Human genetic variation, its implications. Functional genomics, pharmacogenomics, toxicogenomics, proteomics. Interactive, discussion-based course. prereq: Grad student or instr consent Keywords: Pharmacology, Pharmacogenomics, Toxicogenomics, Proteomics, Genetics, Drug
PUBH 7445 - Statistics for Human Genetics and Molecular Biology
Credits: 3.0 [max 3.0]
Typically offered: Every Spring
Introduction to statistical problems arising in molecular biology. Problems in physical mapping (radiation hybrid mapping, DDP), genetic mapping (pedigree analysis, lod scores, TDT), biopolymer sequence analysis (alignment, motif recognition), and micro array analysis. prereq: [6450, [6451 or equiv]] or instr consent; background in molecular biology recommended
MICA 8013 - Translational Cancer Research
Credits: 2.0 [max 2.0]
Grading Basis: A-F or Aud
Typically offered: Every Spring
Clinical issues in cancer research. Discuss translational research projects as they pertain to a variety of cancers. prereq: 8004 or instr consent
GRAD 8101 - Teaching in Higher Education
Credits: 3.0 [max 3.0]
Grading Basis: OPT No Aud
Typically offered: Every Fall, Spring & Summer
Teaching methods/techniques. Active learning, critical thinking, practice teaching, and preparing a portfolio to document/reflect upon teaching. Readings, discussion, peer teaching, e-mail dialog, reflective writing, co-facilitation of course. prereq: Non-Degree Students: contact pffcollege consentumn.edu with questions about registration. If adding a section after first class meeting, contact your instructor as soon as you enroll.
GRAD 8200 - Teaching and Learning Topics in Higher Education
Credits: 1.0 [max 4.0]
Grading Basis: A-F only
Typically offered: Every Fall & Spring
Create course materials for context/discipline. Assess student learning. Write action plan. Topics may include active learning in sciences, teaching with technology, multicultural education, teaching in clinical settings, learning-community course design.
BIOC 5309 - Biocatalysis and Biodegradation
Credits: 3.0 [max 3.0]
Course Equivalencies: Bioc 5309/MicE 5309
Typically offered: Every Spring
Fundamentals of microbial enzymes/metabolism as pertaining to biodegradation of environmental pollutants/biosynthesis for making commodity chemicals. Practical examples. Guest speakers from industry.
BIOC 5351 - Protein Engineering
Credits: 3.0 [max 3.0]
Grading Basis: A-F or Aud
Typically offered: Every Fall
Key properties of enzymes/molecular basis, computer modeling strategies, mutagenesis strategies to create protein variants, expression/screening of protein variants. Evaluate research papers, identify unsolved practical/theoretical problems, plan protein engineering experiment.
CSCI 5461 - Functional Genomics, Systems Biology, and Bioinformatics
Credits: 3.0 [max 3.0]
Typically offered: Every Spring
Computational methods for analyzing, integrating, and deriving predictions from genomic/proteomic data. Analyzing gene expression, proteomic data, and protein-protein interaction networks. Protein/gene function prediction, Integrating diverse data, visualizing genomic datasets. prereq: 3003 or 4041 or instr consent
GRAD 5102 - Preparation for University Teaching for Nonnative English Speakers
Credits: 2.0 [max 2.0]
Grading Basis: S-N or Aud
Typically offered: Every Fall & Spring
Theory/practice of teaching in higher education in the United States. Emphasizes clear oral classroom communication and development of presentation skills. Students practice in a simulated instructional setting. prereq: English Language Proficiency Rating of 4; Contact cei@umn.edu for permission number.
BIOC 8084 - Research and Literature Reports
Credits: 1.0 [max 5.0]
Grading Basis: S-N or Aud
Typically offered: Every Fall & Spring
Current developments. prereq: Grad BMBB major or instr consent
BIOC 8184 - Graduate Seminar
Credits: 1.0 [max 5.0]
Grading Basis: S-N or Aud
Typically offered: Every Fall & Spring
Reports on recent developments in the field and on research projects in the department. prereq: grad BMBB major or DGS consent
BIOL 8100 - Improvisation for Scientists
Credits: 1.0 [max 1.0]
Grading Basis: S-N or Aud
Typically offered: Every Fall
This is a 7-week course designed to practice a wide array of strategies in order to gain awareness and control over your personal expression. Students will develop more effective ways to expand their ability to navigate the stress generally associated with delivering content in front of others. By learning how to manage their personal expression more effectively, students will be able to use specific tools in order to adapt their expression to various settings (large audiences, small groups, or one on one interviews/counseling). Adapting exercises from techniques such as improvisation and storytelling, this class will provide a comfortable and safe environment for students who want to expand their confidence when presenting for others.
GCD 5005 - Computer Programming for Biology
Credits: 3.0 [max 3.0]
Typically offered: Every Fall
Computer programming skills with applications in biology. Design/build new computer programs for applications in cell/developmental biology, including modeling of biological processes, advanced data analysis, automated image analysis. prereq: BIOL 4003 or BIOL 4004 or GCD 3033 or CBS grad or BMBB or MCDB&G grad student, general statistics course
BIOC 8888 - Thesis Credit: Doctoral
Credits: 1.0 -24.0 [max 100.0]
Grading Basis: No Grade
Typically offered: Every Fall, Spring & Summer
(No description) prereq: Max 18 cr per semester or summer; 24 cr required