Twin Cities campus
 
Twin Cities Campus

Data Science Minor

Computer Science and Engineering
College of Science and Engineering
Link to a list of faculty for this program.
Contact Information
Data Science Graduate Program, Department of Computer Science and Engineering, University of Minnesota, 4-192 Keller Hall, 200 Union Street S.E., Minneapolis, MN 55455 (612- 625-4002; fax: 612-625-0572).
  • Program Type: Graduate minor related to major
  • Requirements for this program are current for Fall 2019
  • Length of program in credits (master's): 9
  • Length of program in credits (doctoral): 12
  • This program does not require summer semesters for timely completion.
The Data Science Minor provides a strong foundation in the science of Big Data and its analysis by gathering together the knowledge, expertise, and educational assets in data collection and management, data analytics, scalable data-driven pattern discovery, and the fundamental concepts behind these methods. Students completing this program will learn the state-of-the-art methods for treating Big Data and be exposed to the cutting edge methods and theory forming the basis for the next generation of Big Data technology.
Program Delivery
  • partially online (between 50% to 80% of instruction is online)
Prerequisites for Admission
Currently enrolled in a University of Minnesota M.S. or Ph.D. program.
For an online application or for more information about graduate education admissions, see the General Information section of this website.
Program Requirements
Use of 4xxx courses towards program requirements is not permitted.
Courses must be taken at the University of Minnesota Twin Cities Campus and on the A/F grading scale. Transfer coursework will not be accepted. A 3.0 GPA must be maintained in the courses used for the Data Science minor. All students must take one course from each of the three emphasis areas for a total of at least 9 credits. Doctoral students must take an additional electives course for at least 3 credits.
Algorithmics
Take 1 or more course(s) totaling 3 or more credit(s) from the following:
· CSCI 5521 - Introduction to Machine Learning (3.0 cr)
· CSCI 5523 - Introduction to Data Mining (3.0 cr)
· CSCI 5525 - Machine Learning (3.0 cr)
· EE 8591 - Predictive Learning from Data (3.0 cr)
· PUBH 7475 - Statistical Learning and Data Mining (3.0 cr)
Statistics
Take 1 or more course(s) totaling 3 or more credit(s) from the following:
· STAT 5101 - Theory of Statistics I (4.0 cr)
· STAT 5102 - Introduction to Statistical Learning (4.0 cr)
· STAT 5302 - Applied Regression Analysis (4.0 cr)
· STAT 5511 - Time Series Analysis (3.0 cr)
· STAT 5401 - Applied Multivariate Methods (3.0 cr)
· STAT 8051 - Advanced Regression Techniques: linear, nonlinear and nonparametric methods (3.0 cr)
· PUBH 7440 - Introduction to Bayesian Analysis (3.0 cr)
Infrastructure and Large Scale Computing
Take 1 or more course(s) totaling 3 or more credit(s) from the following:
· CSCI 5105 - Introduction to Distributed Systems (3.0 cr)
· CSCI 5451 - Introduction to Parallel Computing: Architectures, Algorithms, and Programming (3.0 cr)
· CSCI 5707 - Principles of Database Systems (3.0 cr)
· CSCI 8980 - Special Advanced Topics in Computer Science (1.0-3.0 cr)
· EE 5351 - Applied Parallel Programming (3.0 cr)
· Parallel Computer Organization
Either CSCI 8205 or EE 8367. These courses are cross-listed.
· CSCI 8205 - Parallel Computer Organization (3.0 cr)
or EE 8367 - Parallel Computer Organization (3.0 cr)
Program Sub-plans
Students are required to complete one of the following sub-plans.
Students may not complete the program with more than one sub-plan.
Master's
The master's minor requires one course from each of the three emphasis areas for a total of 9 credits.
Doctoral
In addition to one course from each of the three emphasis areas, doctoral students take one elective course from the following to complete the 12-credit minimum.
Biochemistry Electives (6 Credits)
Students cannot use a course from the department housing their degree program as an elective.
Take 1 or more course(s) totaling 3 or more credit(s) from the following:
· STAT 5101 - Theory of Statistics I (4.0 cr)
· STAT 5102 - Introduction to Statistical Learning (4.0 cr)
· STAT 5302 - Applied Regression Analysis (4.0 cr)
· STAT 5511 - Time Series Analysis (3.0 cr)
· STAT 5401 - Applied Multivariate Methods (3.0 cr)
· STAT 8051 - Advanced Regression Techniques: linear, nonlinear and nonparametric methods (3.0 cr)
· PUBH 7440 - Introduction to Bayesian Analysis (3.0 cr)
· PUBH 8401 - Linear Models (4.0 cr)
· PUBH 8432 - Probability Models for Biostatistics (3.0 cr)
· PUBH 7405 - Biostatistics: Regression (4.0 cr)
· PUBH 7430 - Statistical Methods for Correlated Data (3.0 cr)
· PUBH 7460 - Advanced Statistical Computing (3.0 cr)
· PUBH 8442 - Bayesian Decision Theory and Data Analysis (3.0 cr)
· EE 5531 - Probability and Stochastic Processes (3.0 cr)
· EE 8581 - Detection and Estimation Theory (3.0 cr)
· CSCI 5521 - Introduction to Machine Learning (3.0 cr)
· CSCI 5523 - Introduction to Data Mining (3.0 cr)
· CSCI 5525 - Machine Learning (3.0 cr)
· EE 8591 - Predictive Learning from Data (3.0 cr)
· PUBH 7475 - Statistical Learning and Data Mining (3.0 cr)
· CSCI 5302 - Analysis of Numerical Algorithms (3.0 cr)
· CSCI 5304 - Computational Aspects of Matrix Theory (3.0 cr)
· CSCI 5511 - Artificial Intelligence I (3.0 cr)
· CSCI 5512 - Artificial Intelligence II (3.0 cr)
· CSCI 5609 - Visualization (3.0 cr)
· CSCI 8314 - Sparse Matrix Computations (3.0 cr)
· EE 5239 - Introduction to Nonlinear Optimization (3.0 cr)
· EE 5251 - Optimal Filtering and Estimation (3.0 cr)
· EE 5542 - Adaptive Digital Signal Processing (3.0 cr)
· EE 5551 - Multiscale and Multirate Signal Processing (3.0 cr)
· EE 5561 - Image Processing and Applications (3.0 cr)
· EE 5581 - Information Theory and Coding (3.0 cr)
· EE 5585 - Data Compression (3.0 cr)
· EE 8231 - Optimization Theory (3.0 cr)
· IE 5531 - Engineering Optimization I (4.0 cr)
· IE 8534 - Advanced Topics in Operations Research (4.0 cr)
· CSCI 5105 - Introduction to Distributed Systems (3.0 cr)
· CSCI 5451 - Introduction to Parallel Computing: Architectures, Algorithms, and Programming (3.0 cr)
· CSCI 5707 - Principles of Database Systems (3.0 cr)
· CSCI 8980 - Special Advanced Topics in Computer Science (1.0-3.0 cr)
· EE 5351 - Applied Parallel Programming (3.0 cr)
· CSCI 5211 - Data Communications and Computer Networks (3.0 cr)
· CSCI 5231 - Wireless and Sensor Networks (3.0 cr)
· CSCI 5271 - Introduction to Computer Security (3.0 cr)
· CSCI 5708 - Architecture and Implementation of Database Management Systems (3.0 cr)
· CSCI 5715 - From GPS and Virtual Globes to Spatial Computing (3.0 cr)
· CSCI 5980 - Special Topics in Computer Science (1.0-3.0 cr)
· CSCI 8701 - Overview of Database Research (3.0 cr)
· CSCI 8715 - Spatial Data Science Research (3.0 cr)
· CSCI 8725 - Databases for Bioinformatics (3.0 cr)
· EE 5371 - Computer Systems Performance Measurement and Evaluation (3.0 cr)
· EE 5381 - Telecommunications Networks (3.0 cr)
· EE 5501 - Digital Communication (3.0 cr)
· EE 8367 - Parallel Computer Organization (3.0 cr)
· CSCI 8205 - Parallel Computer Organization (3.0 cr)
 
More program views..
· College of Science and Engineering

View sample plan(s):
· Data Science Minor Sample Plan
View PDF Version:
Search.
Search Programs

Search University Catalogs
Related links.

College of Science and Engineering

Graduate Admissions

Graduate School Fellowships

Graduate Assistantships

Colleges and Schools

One Stop
for tuition, course registration, financial aid, academic calendars, and more
 
CSCI 5521 - Introduction to Machine Learning
Credits: 3.0 [max 3.0]
Typically offered: Periodic Fall
Problems of pattern recognition, feature selection, measurement techniques. Statistical decision theory, nonstatistical techniques. Automatic feature selection/data clustering. Syntactic pattern recognition. Mathematical pattern recognition/artificial intelligence. prereq: [[2031 or 2033], STAT 3021] or instr consent
CSCI 5523 - Introduction to Data Mining
Credits: 3.0 [max 3.0]
Typically offered: Periodic Fall & Spring
Data pre-processing techniques, data types, similarity measures, data visualization/exploration. Predictive models (e.g., decision trees, SVM, Bayes, K-nearest neighbors, bagging, boosting). Model evaluation techniques, Clustering (hierarchical, partitional, density-based), association analysis, anomaly detection. Case studies from areas such as earth science, the Web, network intrusion, and genomics. Hands-on projects. prereq: 4041 or equiv or instr consent
CSCI 5525 - Machine Learning
Credits: 3.0 [max 3.0]
Typically offered: Fall Even Year
Models of learning. Supervised algorithms such as perceptrons, logistic regression, and large margin methods (SVMs, boosting). Hypothesis evaluation. Learning theory. Online algorithms such as winnow and weighted majority. Unsupervised algorithms, dimensionality reduction, spectral methods. Graphical models. prereq: Grad student or instr consent
EE 8591 - Predictive Learning from Data
Credits: 3.0 [max 3.0]
Typically offered: Fall Even Year
Methods for estimating dependencies from data have been traditionally explored in such diverse fields as: statistics (multivariate regression and classification), engineering (pattern recognition, system identification), computer science (artificial intelligence, machine learning, data mining) and bioinformatics. Recent interest in learning methods is triggered by the widespread use of digital technology and availability of data. Unfortunately, developments in each field are seldom related to other fields. This course is concerned with estimation of predictive data-analytic models that are estimated using past data, but are used for prediction or decision making with new data. This course will first present general conceptual framework for learning predictive models from data, using Vapnik-Chervonenkis (VC) theoretical framework, and then discuss various methods developed in statistics, pattern recognition and machine learning. Course descriptions will emphasize methodological aspects of machine learning, rather than development of ‘new’ algorithms. prereq: CSE grad student or instr consent
PUBH 7475 - Statistical Learning and Data Mining
Credits: 3.0 [max 3.0]
Typically offered: Periodic Spring
Various statistical techniques for extracting useful information (i.e., learning) from data. Linear discriminant analysis, tree-structured classifiers, feed-forward neural networks, support vector machines, other nonparametric methods, classifier ensembles, unsupervised learning. prereq: [[[6450, 6452] or equiv], programming backgroud in [FORTRAN or C/C++ or JAVA or Splus/R]] or instr consent; 2nd yr MS recommended
STAT 5101 - Theory of Statistics I
Credits: 4.0 [max 4.0]
Typically offered: Every Fall
Logical development of probability, basic issues in statistics. Probability spaces. Random variables, their distributions and expected values. Law of large numbers, central limit theorem, generating functions, multivariate normal distribution. prereq: [Math 2263 or Math 2374 or Math 2573H], [CSCI 2033 or Math 2373 or Math 2243]
STAT 5102 - Introduction to Statistical Learning
Credits: 4.0 [max 4.0]
Course Equivalencies: 00260
Typically offered: Every Spring
Sampling, sufficiency, estimation, test of hypotheses, size/power. Categorical data. Contingency tables. Linear models. Decision theory. prereq: [5101 or Math 5651 or instr consent]
STAT 5302 - Applied Regression Analysis
Credits: 4.0 [max 4.0]
Typically offered: Every Fall, Spring & Summer
Simple, multiple, and polynomial regression. Estimation, testing, prediction. Use of graphics in regression. Stepwise and other numerical methods. Weighted least squares, nonlinear models, response surfaces. Experimental research/applications. prereq: 3032 or 3022 or 4102 or 5021 or 5102 or instr consent
STAT 5511 - Time Series Analysis
Credits: 3.0 [max 3.0]
Typically offered: Every Fall
Characteristics of time series. Stationarity. Second-order descriptions, time-domain representation, ARIMA/GARCH models. Frequency domain representation. Univariate/multivariate time series analysis. Periodograms, non parametric spectral estimation. State-space models. prereq: Theoretical understanding, STAT 4102 or STAT 5102
STAT 5401 - Applied Multivariate Methods
Credits: 3.0 [max 3.0]
Typically offered: Periodic Fall
Bivariate and multivariate distributions. Multivariate normal distributions. Analysis of multivariate linear models. Repeated measures, growth curve and profile analysis. Canonical correlation analysis. Principal components and factor analysis. Discrimination, classification, and clustering.
STAT 8051 - Advanced Regression Techniques: linear, nonlinear and nonparametric methods
Credits: 3.0 [max 3.0]
Grading Basis: A-F or Aud
Typically offered: Every Fall
Linear/generalized linear models, modern regression methods including nonparametric regression, generalized additive models, splines/basis function methods, regularization, bootstrap/other resampling-based inference. prereq: Statistics grad or instr consent
PUBH 7440 - Introduction to Bayesian Analysis
Credits: 3.0 [max 3.0]
Typically offered: Every Spring
Introduction to Bayesian methods. Comparison with traditional frequentist methods. Emphasizes data analysis via modern computing methods: Gibbs sampler, WinBUGS software package. prereq: [[7401 or STAT 5101 or equiv], [public health MPH or biostatistics or statistics] grad student] or instr consent
CSCI 5105 - Introduction to Distributed Systems
Credits: 3.0 [max 3.0]
Typically offered: Periodic Spring
Distributed system design and implementation. Distributed communication and synchronization, data replication and consistency, distributed file systems, fault tolerance, and distributed scheduling. prereq: [5103 or equiv] or instr consent
CSCI 5451 - Introduction to Parallel Computing: Architectures, Algorithms, and Programming
Credits: 3.0 [max 3.0]
Typically offered: Every Spring
Parallel architectures design, embeddings, routing. Examples of parallel computers. Fundamental communication operations. Performance metrics. Parallel algorithms for sorting. Matrix problems, graph problems, dynamic load balancing, types of parallelisms. Parallel programming paradigms. Message passing programming in MPI. Shared-address space programming in openMP or threads. prereq: 4041 or instr consent
CSCI 5707 - Principles of Database Systems
Credits: 3.0 [max 3.0]
Course Equivalencies: CSci 4707/5707/INET 4707
Typically offered: Every Fall
Concepts, database architecture, alternative conceptual data models, foundations of data manipulation/analysis, logical data models, database designs, models of database security/integrity, current trends. prereq: [4041 or instr consent], grad student
CSCI 8980 - Special Advanced Topics in Computer Science
Credits: 1.0 -3.0 [max 27.0]
Typically offered: Every Fall & Spring
Lectures and informal discussions. prereq: instr consent
EE 5351 - Applied Parallel Programming
Credits: 3.0 [max 3.0]
Typically offered: Every Fall
Parallel programming/architecture. Application development for many-core processors. Computational thinking, types of parallelism, programming models, mapping computations effectively to parallel hardware, efficient data structures, paradigms for efficient parallel algorithms, application case studies. prereq: [4363 or equivalent], programming experience (C/C++ preferred)
CSCI 8205 - Parallel Computer Organization
Credits: 3.0 [max 3.0]
Course Equivalencies: CSci 8205/EE 8367
Typically offered: Every Spring
Design/implementation of multiprocessor systems. Parallel machine organization, system design. Differences between parallel, uniprocessor machines. Programming models. Synchronization/communication. Topologies, message routing strategies. Performance optimization techniques. Compiler, system software issues. prereq: 5204 or EE 5364 or instr consent
EE 8367 - Parallel Computer Organization
Credits: 3.0 [max 3.0]
Course Equivalencies: CSci 8205/EE 8367
Typically offered: Every Spring
Design/implementation of multiprocessor systems. Parallel machine organization, system design. Differences between parallel, uniprocessor machines. Programming models. Synchronization/communication. Topologies, message routing strategies. Performance optimization techniques. Compiler, system software issues. prereq: 5364 or CSci 5204
STAT 5101 - Theory of Statistics I
Credits: 4.0 [max 4.0]
Typically offered: Every Fall
Logical development of probability, basic issues in statistics. Probability spaces. Random variables, their distributions and expected values. Law of large numbers, central limit theorem, generating functions, multivariate normal distribution. prereq: [Math 2263 or Math 2374 or Math 2573H], [CSCI 2033 or Math 2373 or Math 2243]
STAT 5102 - Introduction to Statistical Learning
Credits: 4.0 [max 4.0]
Course Equivalencies: 00260
Typically offered: Every Spring
Sampling, sufficiency, estimation, test of hypotheses, size/power. Categorical data. Contingency tables. Linear models. Decision theory. prereq: [5101 or Math 5651 or instr consent]
STAT 5302 - Applied Regression Analysis
Credits: 4.0 [max 4.0]
Typically offered: Every Fall, Spring & Summer
Simple, multiple, and polynomial regression. Estimation, testing, prediction. Use of graphics in regression. Stepwise and other numerical methods. Weighted least squares, nonlinear models, response surfaces. Experimental research/applications. prereq: 3032 or 3022 or 4102 or 5021 or 5102 or instr consent
STAT 5511 - Time Series Analysis
Credits: 3.0 [max 3.0]
Typically offered: Every Fall
Characteristics of time series. Stationarity. Second-order descriptions, time-domain representation, ARIMA/GARCH models. Frequency domain representation. Univariate/multivariate time series analysis. Periodograms, non parametric spectral estimation. State-space models. prereq: Theoretical understanding, STAT 4102 or STAT 5102
STAT 5401 - Applied Multivariate Methods
Credits: 3.0 [max 3.0]
Typically offered: Periodic Fall
Bivariate and multivariate distributions. Multivariate normal distributions. Analysis of multivariate linear models. Repeated measures, growth curve and profile analysis. Canonical correlation analysis. Principal components and factor analysis. Discrimination, classification, and clustering.
STAT 8051 - Advanced Regression Techniques: linear, nonlinear and nonparametric methods
Credits: 3.0 [max 3.0]
Grading Basis: A-F or Aud
Typically offered: Every Fall
Linear/generalized linear models, modern regression methods including nonparametric regression, generalized additive models, splines/basis function methods, regularization, bootstrap/other resampling-based inference. prereq: Statistics grad or instr consent
PUBH 7440 - Introduction to Bayesian Analysis
Credits: 3.0 [max 3.0]
Typically offered: Every Spring
Introduction to Bayesian methods. Comparison with traditional frequentist methods. Emphasizes data analysis via modern computing methods: Gibbs sampler, WinBUGS software package. prereq: [[7401 or STAT 5101 or equiv], [public health MPH or biostatistics or statistics] grad student] or instr consent
PUBH 8401 - Linear Models
Credits: 4.0 [max 4.0]
Typically offered: Every Fall
Theory/application of statistical techniques for regression analysis. Computing for linear models. Modeling, computation, data analysis. prereq: [[7405, concurrent registration is required (or allowed) in STAT 8101] or instr consent], calculus, familiar wtih matrix/linear algebra
PUBH 8432 - Probability Models for Biostatistics
Credits: 3.0 [max 3.0]
Typically offered: Every Fall
Three basic models used for stochastic processes in the biomedical sciences: point processes (emphasizes Poisson processes), Markov processes (emphasizes Markov chains), and Brownian motion. Probability structure and statistical inference studied for each process. prereq: [7450, 7407, Stat 5102, [advanced biostatstics or statistics] major] or instr consent
PUBH 7405 - Biostatistics: Regression
Credits: 4.0 [max 4.0]
Typically offered: Every Fall
T-tests, confidence intervals, power, type I/II errors. Exploratory data analysis. Simple linear regression, regression in matrix notation, multiple regression, diagnostics. Ordinary least squares, violations, generalized least squares, nonlinear least squares regression. Introduction to General linear Model. SAS and S-Plus used. prereq: [[Stat 5101 or concurrent registration is required (or allowed) in Stat 5101], biostatistics major] or instr consent
PUBH 7430 - Statistical Methods for Correlated Data
Credits: 3.0 [max 3.0]
Typically offered: Every Fall
Correlated data arise in many situations, particularly when observations are made over time and space or on individuals who share certain underlying characteristics. This course covers techniques for exploring and describing correlated data, along with statistical methods for estimating population parameters (mostly means) from these data. The focus will be primarily on generalized linear models (both with and without random effects) for normally and non-normally distributed data. Wherever possible, techniques will be illustrated using real-world examples. Computing will be done using R and SAS.
PUBH 7460 - Advanced Statistical Computing
Credits: 3.0 [max 3.0]
Typically offered: Every Fall
Statistical computing using SAS, Splus, and FORTRAN or C. Use of pseudo-random number generators, distribution functions. Matrix manipulations with applications to regression and estimation of variance. Simulation studies, minimization of functions, nonlinear regression, macro programming, numerical methods of integration. prereq: [7405, biostatistics major, [C or FORTRAN]] or instr consent
PUBH 8442 - Bayesian Decision Theory and Data Analysis
Credits: 3.0 [max 3.0]
Typically offered: Every Spring
Theory/application of Bayesian methods. Bayesian methods compared with traditional, frequentist methods. prereq: [[7460 or experience with FORTRAN or with [C, S+]], Stat 5101, Stat 5102, Stat 8311, grad student in [biostatistics or statistics]] or instr consent
EE 5531 - Probability and Stochastic Processes
Credits: 3.0 [max 3.0]
Typically offered: Every Fall
Probability, random variables and random processes. System response to random inputs. Gaussian, Markov and other processes for modeling and engineering applications. Correlation and spectral analysis. Estimation principles. Examples from digital communications and computer networks. prereq: [3025, CSE grad student] or dept consent
EE 8581 - Detection and Estimation Theory
Credits: 3.0 [max 3.0]
Typically offered: Periodic Spring
Risk theory approach to detection and estimation, random process representation, signal parameter estimation. Waveform estimation; detection of phase, frequency, and delay in signals. Applications to communications and radar-sonar signal design and processing. prereq: 5531 or instr consent
CSCI 5521 - Introduction to Machine Learning
Credits: 3.0 [max 3.0]
Typically offered: Periodic Fall
Problems of pattern recognition, feature selection, measurement techniques. Statistical decision theory, nonstatistical techniques. Automatic feature selection/data clustering. Syntactic pattern recognition. Mathematical pattern recognition/artificial intelligence. prereq: [[2031 or 2033], STAT 3021] or instr consent
CSCI 5523 - Introduction to Data Mining
Credits: 3.0 [max 3.0]
Typically offered: Periodic Fall & Spring
Data pre-processing techniques, data types, similarity measures, data visualization/exploration. Predictive models (e.g., decision trees, SVM, Bayes, K-nearest neighbors, bagging, boosting). Model evaluation techniques, Clustering (hierarchical, partitional, density-based), association analysis, anomaly detection. Case studies from areas such as earth science, the Web, network intrusion, and genomics. Hands-on projects. prereq: 4041 or equiv or instr consent
CSCI 5525 - Machine Learning
Credits: 3.0 [max 3.0]
Typically offered: Fall Even Year
Models of learning. Supervised algorithms such as perceptrons, logistic regression, and large margin methods (SVMs, boosting). Hypothesis evaluation. Learning theory. Online algorithms such as winnow and weighted majority. Unsupervised algorithms, dimensionality reduction, spectral methods. Graphical models. prereq: Grad student or instr consent
EE 8591 - Predictive Learning from Data
Credits: 3.0 [max 3.0]
Typically offered: Fall Even Year
Methods for estimating dependencies from data have been traditionally explored in such diverse fields as: statistics (multivariate regression and classification), engineering (pattern recognition, system identification), computer science (artificial intelligence, machine learning, data mining) and bioinformatics. Recent interest in learning methods is triggered by the widespread use of digital technology and availability of data. Unfortunately, developments in each field are seldom related to other fields. This course is concerned with estimation of predictive data-analytic models that are estimated using past data, but are used for prediction or decision making with new data. This course will first present general conceptual framework for learning predictive models from data, using Vapnik-Chervonenkis (VC) theoretical framework, and then discuss various methods developed in statistics, pattern recognition and machine learning. Course descriptions will emphasize methodological aspects of machine learning, rather than development of ‘new’ algorithms. prereq: CSE grad student or instr consent
PUBH 7475 - Statistical Learning and Data Mining
Credits: 3.0 [max 3.0]
Typically offered: Periodic Spring
Various statistical techniques for extracting useful information (i.e., learning) from data. Linear discriminant analysis, tree-structured classifiers, feed-forward neural networks, support vector machines, other nonparametric methods, classifier ensembles, unsupervised learning. prereq: [[[6450, 6452] or equiv], programming backgroud in [FORTRAN or C/C++ or JAVA or Splus/R]] or instr consent; 2nd yr MS recommended
CSCI 5302 - Analysis of Numerical Algorithms
Credits: 3.0 [max 3.0]
Typically offered: Every Spring
Additional topics in numerical analysis. Interpolation, approximation, extrapolation, numerical integration/differentiation, numerical solutions of ordinary differential equations. Introduction to optimization techniques. prereq: 2031 or 2033 or instr consent
CSCI 5304 - Computational Aspects of Matrix Theory
Credits: 3.0 [max 3.0]
Typically offered: Every Fall
Perturbation theory for linear systems and eigenvalue problems. Direct/iterative solution of large linear systems. Matrix factorizations. Computation of eigenvalues/eigenvectors. Singular value decomposition. LAPACK/other software packages. Introduction to sparse matrix methods. prereq: 2031 or 2033 or instr consent
CSCI 5511 - Artificial Intelligence I
Credits: 3.0 [max 3.0]
Course Equivalencies: 01666
Prerequisites: [2041 or #], grad student
Typically offered: Every Fall
Introduction to AI. Problem solving, search, inference techniques. Logic/theorem proving. Knowledge representation, rules, frames, semantic networks. Planning/scheduling. Lisp programming language. prereq: [2041 or instr consent], grad student
CSCI 5512 - Artificial Intelligence II
Credits: 3.0 [max 3.0]
Course Equivalencies: CSci 5512W/5512
Typically offered: Every Spring
Uncertainty in artificial intelligence. Probability as a model of uncertainty, methods for reasoning/learning under uncertainty, utility theory, decision-theoretic methods. prereq: [STAT 3021, 4041] or instr consent
CSCI 5609 - Visualization
Credits: 3.0 [max 3.0]
Typically offered: Fall Even Year
Fundamental theory/practice in data visualization. Programming applications. Perceptual issues in effective data representation, multivariate visualization, information visualization, vector field/volume visualization. prereq: [1913, 4041] or equiv or instr consent
CSCI 8314 - Sparse Matrix Computations
Credits: 3.0 [max 3.0]
Typically offered: Periodic Spring
Sparsity and sparse matrices. Data structures for sparse matrices. Direct methods for sparse linear systems. Reordering techniques to reduce fill-in such as minimal degree ordering and nested dissection ordering. Iterative methods. Preconditioning algorithms. Algorithms for sparse eigenvalue problems and sparse least-squares. prereq: 5304 or numerical linear algebra course or instr consent
EE 5239 - Introduction to Nonlinear Optimization
Credits: 3.0 [max 3.0]
Typically offered: Periodic Fall & Spring
Nonlinear optimization. Analytical/computational methods. Constrained optimization methods. Convex analysis, Lagrangian relaxation, non-differentiable optimization, applications in integer programming. Optimality conditions, Lagrange multiplier theory, duality theory. Control, communications, management science applications. prereq: [3025, Math 2373, Math 2374, CSE grad student] or dept consent
EE 5251 - Optimal Filtering and Estimation
Credits: 3.0 [max 3.0]
Course Equivalencies: 01703 - AEM 5451/EE 5251
Typically offered: Every Fall
Basic probability theory, stochastic processes. Gauss-Markov model. Batch/recursive least squares estimation. Filtering of linear/nonlinear systems. Continuous-time Kalman-Bucy filter. Unscented Kalman filter, particle filters. Applications. prereq: [[[MATH 2243, STAT 3021] or equiv], CSE grad student] or dept consent; 3025, 4231 recommended
EE 5542 - Adaptive Digital Signal Processing
Credits: 3.0 [max 3.0]
Typically offered: Periodic Fall & Spring
Design, application, and implementation of optimum/adaptive discrete-time FIR/IIR filters. Wiener, Kalman, and Least-Squares. Linear prediction. Lattice structure. LMS, RLS, and Levinson-Durbin algorithms. Channel equalization, system identification, biomedical/sensor array processing, spectrum estimation. Noise cancellation applications. prereq: [4541, 5531, CSE grad student] or dept consent
EE 5551 - Multiscale and Multirate Signal Processing
Credits: 3.0 [max 3.0]
Typically offered: Periodic Fall & Spring
Multirate discrete-time systems. Bases, frames. Continuous wavelet transform. Scaling equations. Discrete wavelet transform. Applications in signal/image processing. prereq: [4541, 5531, CSE grad student] or dept consent
EE 5561 - Image Processing and Applications
Credits: 3.0 [max 3.0]
Course Equivalencies: 01244 - EE 5561/EE 8541
Typically offered: Every Spring
Two-dimensional digital filtering/transforms. Application to image enhancement, restoration, compression, and segmentation. prereq: [4541, 5581, CSE grad student] or instr consent
EE 5581 - Information Theory and Coding
Credits: 3.0 [max 3.0]
Typically offered: Fall Even Year
Source/channel models, codes for sources/channels. Entropy, mutual information, capacity, rate-distortion functions. Coding theorems. prereq: [5531, CSE grad student] or dept consent
EE 5585 - Data Compression
Credits: 3.0 [max 3.0]
Typically offered: Periodic Fall & Spring
Source coding in digital communications and recording. Codes for lossless compression. Universal lossless codes. Lossless image compression. Scalar and vector quantizer design. Loss source coding theory. Differential coding, trellis codes, transform/subband coding. Analysis/synthesis schemes. prereq: CSE grad student or dept consent
EE 8231 - Optimization Theory
Credits: 3.0 [max 3.0]
Typically offered: Periodic Fall
Introduction to optimization in engineering; approximation theory. Least squares estimation, optimal control theory, and computational approaches. prereq: instr consent
IE 5531 - Engineering Optimization I
Credits: 4.0 [max 4.0]
Typically offered: Every Fall
Linear programming, simplex method, duality theory, sensitivity analysis, interior point methods, integer programming, branch/bound/dynamic programming. Emphasizes applications in production/logistics, including resource allocation, transportation, facility location, networks/flows, scheduling, production planning. prereq: Upper div or grad student or CNR
IE 8534 - Advanced Topics in Operations Research
Credits: 4.0 [max 8.0]
Typically offered: Every Fall & Spring
Special topics determined by instructor. Examples include Markov decision processes, stochastic programming, integer/combinatorial optimization, and queueing networks. prereq: 5531, 8532
CSCI 5105 - Introduction to Distributed Systems
Credits: 3.0 [max 3.0]
Typically offered: Periodic Spring
Distributed system design and implementation. Distributed communication and synchronization, data replication and consistency, distributed file systems, fault tolerance, and distributed scheduling. prereq: [5103 or equiv] or instr consent
CSCI 5451 - Introduction to Parallel Computing: Architectures, Algorithms, and Programming
Credits: 3.0 [max 3.0]
Typically offered: Every Spring
Parallel architectures design, embeddings, routing. Examples of parallel computers. Fundamental communication operations. Performance metrics. Parallel algorithms for sorting. Matrix problems, graph problems, dynamic load balancing, types of parallelisms. Parallel programming paradigms. Message passing programming in MPI. Shared-address space programming in openMP or threads. prereq: 4041 or instr consent
CSCI 5707 - Principles of Database Systems
Credits: 3.0 [max 3.0]
Course Equivalencies: CSci 4707/5707/INET 4707
Typically offered: Every Fall
Concepts, database architecture, alternative conceptual data models, foundations of data manipulation/analysis, logical data models, database designs, models of database security/integrity, current trends. prereq: [4041 or instr consent], grad student
CSCI 8980 - Special Advanced Topics in Computer Science
Credits: 1.0 -3.0 [max 27.0]
Typically offered: Every Fall & Spring
Lectures and informal discussions. prereq: instr consent
EE 5351 - Applied Parallel Programming
Credits: 3.0 [max 3.0]
Typically offered: Every Fall
Parallel programming/architecture. Application development for many-core processors. Computational thinking, types of parallelism, programming models, mapping computations effectively to parallel hardware, efficient data structures, paradigms for efficient parallel algorithms, application case studies. prereq: [4363 or equivalent], programming experience (C/C++ preferred)
CSCI 5211 - Data Communications and Computer Networks
Credits: 3.0 [max 3.0]
Course Equivalencies: 00495 - CSci 4211/CSci 5211
Typically offered: Every Fall
Concepts, principles, protocols, and applications of computer networks. Layered network architectures, data link protocols, local area networks, network layer/routing protocols, transport, congestion/flow control, emerging high-speed networks, network programming interfaces, networked applications. Case studies using Ethernet, Token Ring, FDDI, TCP/IP, ATM, Email, HTTP, and WWW. prereq: [4061 or instr consent], basic knowledge of [computer architecture, operating systems, probability], grad student
CSCI 5231 - Wireless and Sensor Networks
Credits: 3.0 [max 3.0]
Typically offered: Spring Odd Year
Enabling technologies, including hardware, embedded operating systems, programming environment, communication, networking, and middleware services. Hands-on experience in programming tiny communication devices. prereq: 4211 or 5211 or instr consent
CSCI 5271 - Introduction to Computer Security
Credits: 3.0 [max 3.0]
Typically offered: Every Fall
Concepts of computer, network, and information security. Risk analysis, authentication, access control, security evaluation, audit trails, cryptography, network/database/application security, viruses, firewalls. prereq: 4061 or equiv or instr consent
CSCI 5708 - Architecture and Implementation of Database Management Systems
Credits: 3.0 [max 3.0]
Typically offered: Every Spring
Techniques in commercial/research-oriented database systems. Catalogs. Physical storage techniques. Query processing/optimization. Transaction management. Mechanisms for concurrency control, disaster recovery, distribution, security, integrity, extended data types, triggers, and rules. prereq: 4707 or 5707 or instr consent
CSCI 5715 - From GPS and Virtual Globes to Spatial Computing
Credits: 3.0 [max 3.0]
Typically offered: Spring Even Year
Mathematical concepts, geo-information, representations, algorithms, data-structures/access methods, analysis, architectures, interfaces, reasoning, time. prereq: Familiarity with Java, C++, or Python
CSCI 5980 - Special Topics in Computer Science
Credits: 1.0 -3.0 [max 27.0]
Typically offered: Periodic Fall & Spring
Lectures and informal discussions on current topics in computer science. prereq: instr consent; may be repeated for cr
CSCI 8701 - Overview of Database Research
Credits: 3.0 [max 3.0]
Typically offered: Periodic Fall & Spring
Research papers from journals and conferences on current topics in databases, such as database research methodologies, relational implementation techniques, active databases, storage systems, benchmarking, distributed and parallel databases, new data models, prototype systems, data mining, and future directions. prereq: 5708 or instr consent
CSCI 8715 - Spatial Data Science Research
Credits: 3.0 [max 3.0]
Typically offered: Periodic Fall & Spring
Motivation, models of spatial information, querying spatial data, processing strategies for spatial queries, multi-dimensional storage/access methods, spatial graph datasets, spatial data mining, trends (e.g., spatio-temporal databases, mobile objects, raster databases), research literature, how to pursue research. prereq: 4707 or 5707 or 5715 or GIS 5571 or GIS 5573
CSCI 8725 - Databases for Bioinformatics
Credits: 3.0 [max 3.0]
Typically offered: Periodic Spring
DBMS support for biological databases, data models. Searching integrated public domain databases. Queries/analyses, DBMS extensions, emerging applications. prereq: 4707 or 5707 or instr consent
EE 5371 - Computer Systems Performance Measurement and Evaluation
Credits: 3.0 [max 3.0]
Course Equivalencies: EE 5371/5863
Typically offered: Periodic Fall & Spring
Tools/techniques for analyzing computer hardware, software, system performance. Benchmark programs, measurement tools, performance metrics. Deterministic/probabilistic simulation techniques, random number generation/testing. Bottleneck analysis. prereq: [4363 or 5361 or CSci 4203 or 5201], [CSE grad student] or dept consent
EE 5381 - Telecommunications Networks
Credits: 3.0 [max 3.0]
Typically offered: Periodic Fall & Spring
Fundamental concepts of modern telecommunications networks, mathematical tools required for their performance analysis. Layered network architecture, point-to-point protocols/links, delay models, multiaccess communication/routing. prereq: [4501, 5531, CSE grad student] or dept consent
EE 5501 - Digital Communication
Credits: 3.0 [max 3.0]
Typically offered: Every Fall
Theory/techniques of modern digital communications. Communication limits. Modulation/detection. Data transmission over channels with intersymbol interference. Optimal/suboptimal sequence detection. Equalization. Error correction coding. Trellis-coded modulation. Multiple access. prereq: [3025, 4501, CSE grad student] or dept consent
EE 8367 - Parallel Computer Organization
Credits: 3.0 [max 3.0]
Course Equivalencies: CSci 8205/EE 8367
Typically offered: Every Spring
Design/implementation of multiprocessor systems. Parallel machine organization, system design. Differences between parallel, uniprocessor machines. Programming models. Synchronization/communication. Topologies, message routing strategies. Performance optimization techniques. Compiler, system software issues. prereq: 5364 or CSci 5204
CSCI 8205 - Parallel Computer Organization
Credits: 3.0 [max 3.0]
Course Equivalencies: CSci 8205/EE 8367
Typically offered: Every Spring
Design/implementation of multiprocessor systems. Parallel machine organization, system design. Differences between parallel, uniprocessor machines. Programming models. Synchronization/communication. Topologies, message routing strategies. Performance optimization techniques. Compiler, system software issues. prereq: 5204 or EE 5364 or instr consent