Twin Cities campus
 
Twin Cities Campus

Data Science Certificate

Computer Science and Engineering
College of Science and Engineering
Link to a list of faculty for this program.
Contact Information
Data Science Graduate Program, Department of Computer Science and Engineering, University of Minnesota, 4-192 Keller Hall, 200 Union Street S.E., Minneapolis, MN 55455 (612- 625-4002; fax: 612-625-0572).
  • Program Type: Post-baccalaureate credit certificate/licensure/endorsement
  • Requirements for this program are current for Fall 2017
  • Length of program in credits: 12
  • This program does not require summer semesters for timely completion.
  • Degree:
Along with the program-specific requirements listed below, please read the General Information section of this website for requirements that apply to all major fields.
The Data Science Certificate program provides a strong foundation in the science of Big Data and its analysis by gathering in a single program the knowledge, expertise, and educational assets in data collection and management, data analytics, scalable data-driven pattern discovery, and the fundamental concepts behind these methods. Students who graduate from this 2-semester certificate program will learn the state-of-the-art methods for treating Big Data and be exposed to the cutting edge methods and theory forming the basis for the next generation of Big Data technology.
Program Delivery
  • partially online (between 50% to 80% of instruction is online)
Prerequisites for Admission
The preferred undergraduate GPA for admittance to the program is 3.00.
A bachelor's degree from an accredited college or university in computer science, math, statistics, engineering, natural sciences, or a related field.
Other requirements to be completed before admission:
The undergraduate degree must include statistics, calculus, multivariable calculus, linear algebra, and mathematical software environments such as Matlab or R or the equivalent, programming languages such as C+, C++, Java, programming experience including algorithms and data structures normally taught in beginning computer science courses either as part of the undergraduate degree or subsequent work experience.
Special Application Requirements:
Admission application deadlines: rolling. Applicants are considered for Fall or Spring admission and decisions are made after all applications are received following the close of the application cycle. Application instructions can be found here: https://datascience.umn.edu/admissions
International applicants must submit score(s) from one of the following tests:
  • TOEFL
    • Internet Based - Writing Score: 23
    • Internet Based - Reading Score: 23
    • Paper Based - Total Score: 550
  • IELTS
    • Total Score: 6.5
  • MELAB
    • Part 1 (Composition) score: 80
Key to test abbreviations (TOEFL, IELTS, MELAB).
For an online application or for more information about graduate education admissions, see the General Information section of this website.
Program Requirements
Use of 4xxx courses towards program requirements is not permitted.
A minimum GPA of 3.00 is required for students to remain in good standing.
The Data Science certificate requires a minimum of 12 credits consisting of one course from each of the three emphasis areas, plus one course chosen from any of the three emphasis areas.
Statistics
Take 1 or more course(s) totaling 3 or more credit(s) from the following:
· STAT 5101 - Theory of Statistics I (4.0 cr)
or STAT 5102 - Theory of Statistics II (4.0 cr)
or STAT 5302 - Applied Regression Analysis (4.0 cr)
or STAT 5401 - Applied Multivariate Methods (3.0 cr)
or STAT 5511 - Time Series Analysis (3.0 cr)
or STAT 8051 - Advanced Regression Techniques: linear, nonlinear and nonparametric methods (3.0 cr)
or PUBH 7440 - Introduction to Bayesian Analysis (3.0 cr)
Algorithmics
Take 1 or more course(s) totaling 3 or more credit(s) from the following:
· CSCI 5521 - Introduction to Machine Learning (3.0 cr)
or CSCI 5523 - Introduction to Data Mining (3.0 cr)
or CSCI 5525 - Machine Learning (3.0 cr)
or EE 8591 - Predictive Learning from Data (3.0 cr)
or PUBH 8475 - Statistical Learning and Data Mining (3.0 cr)
Infrastructure and Large Scale Computing
Take 1 or more course(s) totaling 3 or more credit(s) from the following:
· CSCI 5105 - Introduction to Distributed Systems (3.0 cr)
or CSCI 5451 - Introduction to Parallel Computing: Architectures, Algorithms, and Programming (3.0 cr)
or CSCI 5707 - Principles of Database Systems (3.0 cr)
or CSCI 8980 - Special Advanced Topics in Computer Science (1.0-3.0 cr)
or EE 5351 - Applied Parallel Programming (3.0 cr)
or EE 8367 - Parallel Computer Organization (3.0 cr)
 
More program views..
· College of Science and Engineering

View future requirement(s):
· Fall 2018

View PDF Version:
Search.
Search Programs

Search University Catalogs
Related links.

College of Science and Engineering

Graduate Admissions

Graduate School Fellowships

Graduate Assistantships

Colleges and Schools

One Stop
for tuition, course registration, financial aid, academic calendars, and more
 
STAT 5101 - Theory of Statistics I
Credits: 4.0 [max 4.0]
Course Equivalencies: 00259 - Math 5651/Stat 5101
Typically offered: Every Fall
Logical development of probability, basic issues in statistics. Probability spaces. Random variables, their distributions and expected values. Law of large numbers, central limit theorem, generating functions, multivariate normal distribution. prereq: [Math 2263 or Math 2374 or Math 2573H], [CSCI 2033 or Math 2373 or Math 2243]
STAT 5102 - Theory of Statistics II
Credits: 4.0 [max 4.0]
Course Equivalencies: Stat 4102/5102
Typically offered: Every Spring
Sampling, sufficiency, estimation, test of hypotheses, size/power. Categorical data. Contingency tables. Linear models. Decision theory. prereq: 5101 or Math 5651
STAT 5302 - Applied Regression Analysis
Credits: 4.0 [max 4.0]
Typically offered: Every Fall, Spring & Summer
Simple, multiple, and polynomial regression. Estimation, testing, prediction. Use of graphics in regression. Stepwise and other numerical methods. Weighted least squares, nonlinear models, response surfaces. Experimental research/applications. prereq: 3022 or 4102 or 5021 or 5102 or instr consent
STAT 5401 - Applied Multivariate Methods
Credits: 3.0 [max 3.0]
Typically offered: Periodic Fall
Bivariate and multivariate distributions. Multivariate normal distributions. Analysis of multivariate linear models. Repeated measures, growth curve and profile analysis. Canonical correlation analysis. Principal components and factor analysis. Discrimination, classification, and clustering.
STAT 5511 - Time Series Analysis
Credits: 3.0 [max 3.0]
Typically offered: Every Fall
Characteristics of time series. Stationarity. Second-order descriptions, time-domain representation, ARIMA/GARCH models. Frequency domain representation. Univariate/multivariate time series analysis. Periodograms, non parametric spectral estimation. State-space models. prereq: Theoretical understanding
STAT 8051 - Advanced Regression Techniques: linear, nonlinear and nonparametric methods
Credits: 3.0 [max 3.0]
Grading Basis: A-F or Aud
Typically offered: Every Fall
Linear/generalized linear models, modern regression methods including nonparametric regression, generalized additive models, splines/basis function methods, regularization, bootstrap/other resampling-based inference. prereq: Statistics grad or instr consent
PUBH 7440 - Introduction to Bayesian Analysis
Credits: 3.0 [max 3.0]
Typically offered: Every Spring
Introduction to Bayesian methods. Comparison with traditional frequentist methods. Emphasizes data analysis via modern computing methods: Gibbs sampler, WinBUGS software package. prereq: [[7401 or STAT 5101 or equiv], [public health MPH or biostatistics or statistics] grad student] or instr consent
CSCI 5521 - Introduction to Machine Learning
Credits: 3.0 [max 3.0]
Typically offered: Periodic Fall
Problems of pattern recognition, feature selection, measurement techniques. Statistical decision theory, nonstatistical techniques. Automatic feature selection/data clustering. Syntactic pattern recognition. Mathematical pattern recognition/artificial intelligence. prereq: [[2031 or 2033], STAT 3021] or instr consent
CSCI 5523 - Introduction to Data Mining
Credits: 3.0 [max 3.0]
Typically offered: Periodic Fall & Spring
Data pre-processing techniques, data types, similarity measures, data visualization/exploration. Predictive models (e.g., decision trees, SVM, Bayes, K-nearest neighbors, bagging, boosting). Model evaluation techniques, Clustering (hierarchical, partitional, density-based), association analysis, anomaly detection. Case studies from areas such as earth science, the Web, network intrusion, and genomics. Hands-on projects. prereq: 4041 or equiv or instr consent
CSCI 5525 - Machine Learning
Credits: 3.0 [max 3.0]
Typically offered: Fall Even Year
Models of learning. Supervised algorithms such as perceptrons, logistic regression, and large margin methods (SVMs, boosting). Hypothesis evaluation. Learning theory. Online algorithms such as winnow and weighted majority. Unsupervised algorithms, dimensionality reduction, spectral methods. Graphical models. prereq: Grad student or instr consent
EE 8591 - Predictive Learning from Data
Credits: 3.0 [max 3.0]
Typically offered: Fall Even Year
Methods for estimating dependencies from data have been traditionally explored in such diverse fields as: statistics (multivariate regression and classification), engineering (pattern recognition, system identification), computer science (artificial intelligence, machine learning, data mining) and bioinformatics. Recent interest in learning methods is triggered by the widespread use of digital technology and availability of data. Unfortunately, developments in each field are seldom related to other fields. This course is concerned with estimation of predictive data-analytic models that are estimated using past data, but are used for prediction or decision making with new data. This course will first present general conceptual framework for learning predictive models from data, using Vapnik-Chervonenkis (VC) theoretical framework, and then discuss various methods developed in statistics, pattern recognition and machine learning. Course descriptions will emphasize methodological aspects of machine learning, rather than development of ‘new’ algorithms. prereq: CSE grad student or instr consent
PUBH 8475 - Statistical Learning and Data Mining
Credits: 3.0 [max 3.0]
Course Equivalencies: 01358
Typically offered: Periodic Spring
Statistical techniques for extracting useful information from data. Linear discriminant analysis, tree-structured classifiers, feed-forward neural networks, support vector machines, other nonparametric methods, classifier ensembles (such as bagging/boosting), unsupervised learning. prereq: [[[6450, 6451, 6452] or STAT 5303 or equiv], [biostatistics or statistics PhD student]] or instr consent
CSCI 5105 - Introduction to Distributed Systems
Credits: 3.0 [max 3.0]
Typically offered: Periodic Spring
Distributed system design and implementation. Distributed communication and synchronization, data replication and consistency, distributed file systems, fault tolerance, and distributed scheduling. prereq: [5103 or equiv] or instr consent
CSCI 5451 - Introduction to Parallel Computing: Architectures, Algorithms, and Programming
Credits: 3.0 [max 3.0]
Typically offered: Every Spring
Parallel architectures design, embeddings, routing. Examples of parallel computers. Fundamental communication operations. Performance metrics. Parallel algorithms for sorting. Matrix problems, graph problems, dynamic load balancing, types of parallelisms. Parallel programming paradigms. Message passing programming in MPI. Shared-address space programming in openMP or threads. prereq: 4041 or instr consent
CSCI 5707 - Principles of Database Systems
Credits: 3.0 [max 3.0]
Course Equivalencies: CSci 4707/5707/INET 4707
Typically offered: Every Fall
Concepts, database architecture, alternative conceptual data models, foundations of data manipulation/analysis, logical data models, database designs, models of database security/integrity, current trends. prereq: [4041 or instr consent], grad student
CSCI 8980 - Special Advanced Topics in Computer Science
Credits: 1.0 -3.0 [max 27.0]
Typically offered: Every Fall & Spring
Lectures and informal discussions. prereq: instr consent
EE 5351 - Applied Parallel Programming
Credits: 3.0 [max 3.0]
Typically offered: Every Fall
Parallel programming/architecture. Application development for many-core processors. Computational thinking, types of parallelism, programming models, mapping computations effectively to parallel hardware, efficient data structures, paradigms for efficient parallel algorithms, application case studies. prereq: [4363 or equivalent], programming experience (C/C++ preferred)
EE 8367 - Parallel Computer Organization
Credits: 3.0 [max 3.0]
Course Equivalencies: CSci 8205/EE 8367
Typically offered: Every Spring
Design/implementation of multiprocessor systems. Parallel machine organization, system design. Differences between parallel, uniprocessor machines. Programming models. Synchronization/communication. Topologies, message routing strategies. Performance optimization techniques. Compiler, system software issues. prereq: 5364 or CSci 5204