Twin Cities campus

This is archival data. This system was retired as of August 21, 2023 and the information on this page has not been updated since then. For current information, visit catalogs.umn.edu.

 
Twin Cities Campus

Biomedical Engineering B.Bm.E.

Department of Biomedical Engineering
College of Science and Engineering
  • Program Type: Baccalaureate
  • Requirements for this program are current for Fall 2013
  • Required credits to graduate with this degree: 124
  • Required credits within the major: 71
  • Degree: Bachelor of Biomedical Engineering
Biomedical engineers apply the fundamentals of mathematics, physics, chemistry, and biology to solve medically relevant problems. Examples of biomedical engineering activities include medical device design, fabrication and testing, prosthesis fabrication, ergonomics and human factors, physiological function monitoring, home health care technology development, biomedical informatics, functional imaging and tomography, biomaterial development and biocompatibility, artificial tissue and organ fabrication, cell- and biomolecule-based sensors and therapeutics, gene therapy development, and biomedical microsystems.
Program Delivery
This program is available:
  • via classroom (the majority of instruction is face-to-face)
Admission Requirements
Students must complete 10 courses before admission to the program.
Freshman and transfer students are usually admitted to pre-major status before admission to this major.
For information about University of Minnesota admission requirements, visit the Office of Admissions website.
Required prerequisites
Mathematics
Honors math (MATH 1571H, 1572H, 2573H, 2574H) may be taken in place of the listed courses.
MATH 1271 - Calculus I [MATH] (4.0 cr)
or MATH 1371 - CSE Calculus I [MATH] (4.0 cr)
MATH 1272 - Calculus II (4.0 cr)
or MATH 1372 - CSE Calculus II (4.0 cr)
MATH 2243 - Linear Algebra and Differential Equations (4.0 cr)
or MATH 2373 - CSE Linear Algebra and Differential Equations (4.0 cr)
Required prerequisites
Physical Sciences
CHEM 1061 - Chemical Principles I [PHYS] (3.0 cr)
or CHEM 1071H - Honors Chemistry I [PHYS] (3.0 cr)
CHEM 1065 - Chemical Principles I Laboratory [PHYS] (1.0 cr)
or CHEM 1075H - Honors Chemistry I Laboratory [PHYS] (1.0 cr)
CHEM 1062 - Chemical Principles II [PHYS] (3.0 cr)
or CHEM 1072H - Honors Chemistry II [PHYS] (3.0 cr)
CHEM 1066 - Chemical Principles II Laboratory [PHYS] (1.0 cr)
or CHEM 1076H - Honors Chemistry II Laboratory [PHYS] (1.0 cr)
CHEM 2301 - Organic Chemistry I (3.0 cr)
PHYS 1301W - Introductory Physics for Science and Engineering I [PHYS, WI] (4.0 cr)
or PHYS 1401V - Honors Physics I [PHYS, WI] (4.0 cr)
PHYS 1302W - Introductory Physics for Science and Engineering II [PHYS, WI] (4.0 cr)
or PHYS 1402V - Honors Physics II [PHYS, WI] (4.0 cr)
Required prerequisites
Preparatory Courses
BMEN 2401 - Programming for Biomedical Engineers (2.0 cr)
BMEN 2501 - Cellular and Molecular Biology for Biomedical Engineers [BIOL] (4.0 cr)
General Requirements
All students in baccalaureate degree programs are required to complete general University and college requirements including writing and liberal education courses. For more information about University-wide requirements, see the liberal education requirements. Required courses for the major, minor or certificate in which a student receives a D grade (with or without plus or minus) do not count toward the major, minor or certificate (including transfer courses).
Program Requirements
Statistics
STAT 3021 - Introduction to Probability and Statistics (3.0 cr)
Major Courses
BMEN 1601 - Biomedical Engineering Undergraduate Seminar I (1.0 cr)
BMEN 1602 - Biomedical Engineering Undergraduate Seminar II (1.0 cr)
BMEN 3011 - Biomechanics (3.0 cr)
BMEN 3111 - Biomedical Transport Processes (3.0 cr)
BMEN 3211 - Bioelectricity and Bioinstrumentation (3.0 cr)
BMEN 3311 - Biomaterials (3.0 cr)
BMEN 3411 - Biomedical Systems Analysis (3.0 cr)
BMEN 4001W - Biomedical Engineering Design I [WI] (3.0 cr)
BMEN 4002W - Biomedical Engineering Design II [WI] (3.0 cr)
PHSL 3061 - Principles of Physiology (4.0 cr)
PHSL 3701 - Physiology Laboratory (2.0 cr)
BMEN 2101 - Biomedical Thermodynamics and Kinetics (3.0 cr)
BMEN 3015 - Biomechanics Lab (1.0 cr)
BMEN 3215 - Bioelectricity and Bioinstrumentation Lab (1.0 cr)
BMEN 3315 - Biomaterials Lab (1.0 cr)
BMEN 3115 - Biomedical Transport Processes Lab (1.0 cr)
BMEN 3415 - Biomedical Systems Analysis Lab (1.0 cr)
Technical Electives
Take 27 credits of technical electives approved by an adviser. A maximum of 10 credits of science courses and a maximum of 6 credits of research may be counted toward the total.
Multivariable Calculus
MATH 2374 - CSE Multivariable Calculus and Vector Analysis (4.0 cr)
or MATH 2263 - Multivariable Calculus (4.0 cr)
Program Sub-plans
A sub-plan is not required for this program.
Honors UHP
This is an honors sub-plan.
Students admitted to the University Honors Program (UHP) must fulfill UHP requirements in addition to degree program requirements. Honors courses used to fulfill degree program requirements will also fulfill UHP requirements. Current departmental honors course offerings are listed at: http://www.honors.umn.edu/academics/curriculum/dept_courses_current.html Honors students complete an honors thesis project in the final year, most often in conjunction with an honors thesis course, or with an honors directed studies or honors directed research course. Students select honors courses and plan for a thesis project in consultation with their UHP adviser and their departmental faculty adviser.
 
More program views..
View college catalog(s):
· College of Science and Engineering

View future requirement(s):
· Spring 2023
· Fall 2022
· Fall 2020
· Fall 2018
· Spring 2017
· Fall 2016
· Fall 2014
· Spring 2014

View sample plan(s):
· Biomedical Engineering

View checkpoint chart:
· Biomedical Engineering B.Bm.E.
View PDF Version:
Search.
Search Programs

Search University Catalogs
Related links.

College of Science and Engineering

TC Undergraduate Admissions

TC Undergraduate Application

One Stop
for tuition, course registration, financial aid, academic calendars, and more
 
MATH 1271 - Calculus I (MATH)
Credits: 4.0 [max 4.0]
Course Equivalencies: Math 1271/Math 1281/Math 1371/
Typically offered: Every Fall, Spring & Summer
Differential calculus of functions of a single variable, including polynomial, rational, exponential, and trig functions. Applications, including optimization and related rates problems. Single variable integral calculus, using anti-derivatives and simple substitution. Applications may include area, volume, work problems. prereq: 4 yrs high school math including trig or satisfactory score on placement test or grade of at least C- in [1151 or 1155]
MATH 1371 - CSE Calculus I (MATH)
Credits: 4.0 [max 4.0]
Course Equivalencies: Math 1271/Math 1281/Math 1371/
Typically offered: Every Fall & Spring
Differentiation of single-variable functions, basics of integration of single-variable functions. Applications: max-min, related rates, area, curve-sketching. Use of calculator, cooperative learning. prereq: CSE or pre-bioprod concurrent registration is required (or allowed) in biosys engn (PRE), background in [precalculus, geometry, visualization of functions/graphs], instr consent; familiarity with graphing calculators recommended
MATH 1272 - Calculus II
Credits: 4.0 [max 4.0]
Course Equivalencies: Math 1272/Math 1282/Math 1372/
Typically offered: Every Fall, Spring & Summer
Techniques of integration. Calculus involving transcendental functions, polar coordinates. Taylor polynomials, vectors/curves in space, cylindrical/spherical coordinates. prereq: [1271 or equiv] with grade of at least C-
MATH 1372 - CSE Calculus II
Credits: 4.0 [max 4.0]
Course Equivalencies: Math 1272/Math 1282/Math 1372/
Typically offered: Every Spring
Techniques of integration. Calculus involving transcendental functions, polar coordinates, Taylor polynomials, vectors/curves in space, cylindrical/spherical coordinates. Use of calculators, cooperative learning. prereq: Grade of at least C- in [1371 or equiv], CSE or pre-Bioprod/Biosys Engr
MATH 2243 - Linear Algebra and Differential Equations
Credits: 4.0 [max 4.0]
Course Equivalencies: Math 2243/Math 2373/Math 2574H
Typically offered: Every Fall, Spring & Summer
Linear algebra: basis, dimension, matrices, eigenvalues/eigenvectors. Differential equations: first-order linear, separable; second-order linear with constant coefficients; linear systems with constant coefficients. prereq: [1272 or 1282 or 1372 or 1572] w/grade of at least C-
MATH 2373 - CSE Linear Algebra and Differential Equations
Credits: 4.0 [max 4.0]
Course Equivalencies: Math 2243/Math 2373/Math 2574H
Typically offered: Every Fall & Spring
Linear algebra: basis, dimension, eigenvalues/eigenvectors. Differential equations: linear equations/systems, phase space, forcing/resonance, qualitative/numerical analysis of nonlinear systems, Laplace transforms. Use of computer technology. prereq: [1272 or 1282 or 1372 or 1572] w/grade of at least C-, CSE or pre-Bio Prod/Biosys Engr
CHEM 1061 - Chemical Principles I (PHYS)
Credits: 3.0 [max 3.0]
Course Equivalencies: Chem 1061/ 1071/H/ 1081
Typically offered: Every Fall, Spring & Summer
Atomic theory, periodic properties of elements. Thermochemistry, reaction stoichiometry. Behavior of gases, liquids, and solids. Molecular/ionic structure/bonding. Organic chemistry and polymers. energy sources, environmental issues related to energy use. Prereq-Grade of at least C- in [1011 or 1015] or [passing placement exam, concurrent registration is required (or allowed) in 1065]; intended for science or engineering majors; concurrent registration is required (or allowed) in 1065; registration for 1065 must precede registration for 1061
CHEM 1071H - Honors Chemistry I (PHYS)
Credits: 3.0 [max 3.0]
Course Equivalencies: Chem 1061/ 1071/H/ 1081
Grading Basis: A-F only
Typically offered: Every Fall
Advanced introduction to atomic theory. Periodic properties of elements. Behavior of gases, liquids, and solids. Molecular/ionic structure, bonding. Aspects of organic chemistry, spectroscopy, and polymers. Mathematically demanding quantitative problems. Writing for scientific journals. prereq: Honors student, permission of University Honors Program, concurrent registration is required (or allowed) in 1075H; registration for 1075H must precede registration for 1071H
CHEM 1065 - Chemical Principles I Laboratory (PHYS)
Credits: 1.0 [max 1.0]
Course Equivalencies: Chem 1065/Chem 1075H
Grading Basis: A-F only
Typically offered: Every Fall, Spring & Summer
Basic laboratory skills while investigating physical and chemical phenomena closely linked to lecture material. Experimental design, data collection and treatment, discussion of errors, and proper treatment of hazardous wastes. prereq: concurrent registration is required (or allowed) in 1061
CHEM 1075H - Honors Chemistry I Laboratory (PHYS)
Credits: 1.0 [max 1.0]
Course Equivalencies: Chem 1065/Chem 1075H
Grading Basis: A-F only
Typically offered: Every Fall
Develop laboratory skills while investigating physical and chemical phenomena closely linked to lecture material. Experimental design, data collection and treatment, discussion of errors, and the proper treatment of hazardous wastes. prereq: prereq or coreq 1071H; honors student or permission of University Honors Program
CHEM 1062 - Chemical Principles II (PHYS)
Credits: 3.0 [max 3.0]
Course Equivalencies: Chem 1062/1072/1072H/1082/
Typically offered: Every Fall, Spring & Summer
Chemical kinetics. Radioactive decay. Chemical equilibrium. Solutions. Acids/bases. Solubility. Second law of thermodynamics. Electrochemistry/corrosion. Descriptive chemistry of elements. Coordination chemistry. Biochemistry. prereq: Grade of at least C- in 1061 or equiv, concurrent registration is required (or allowed) in 1066; registration for 1066 must precede registration for 1062
CHEM 1072H - Honors Chemistry II (PHYS)
Credits: 3.0 [max 3.0]
Course Equivalencies: Chem 1062/1072/1072H/1082/
Grading Basis: A-F only
Typically offered: Every Spring
Advanced introduction. Chemical kinetics/reaction mechanisms, chemical/physical equilibria, acids/bases, entropy/second law of thermodynamics, electrochemistry/corrosion; descriptive chemistry of elements; coordination chemistry; biochemistry. prereq: 1071H, concurrent registration is required (or allowed) in 1076H, honors student, registration for 1076H must precede registration for 1072H
CHEM 1066 - Chemical Principles II Laboratory (PHYS)
Credits: 1.0 [max 1.0]
Course Equivalencies: Chem 1066/Chem 1076H
Grading Basis: A-F only
Typically offered: Every Fall, Spring & Summer
Basic laboratory skills while investigating physical and chemical phenomena closely linked to lecture material. Experimental design, data collection and treatment, discussion of errors, and proper treatment of hazardous wastes. prereq: concurrent registration is required (or allowed) in 1062
CHEM 1076H - Honors Chemistry II Laboratory (PHYS)
Credits: 1.0 [max 1.0]
Course Equivalencies: Chem 1066/Chem 1076H
Grading Basis: A-F only
Typically offered: Every Spring
Develop laboratory skills as experiments become increasingly complex. Data collection/treatment, discussion of errors, proper treatment of hazardous wastes, experiment design. prereq: concurrent registration is required (or allowed) in 1072H
CHEM 2301 - Organic Chemistry I
Credits: 3.0 [max 3.0]
Course Equivalencies: Chem 2301/Chem 2331H
Typically offered: Every Fall, Spring & Summer
Organic compounds, constitutions, configurations, conformations, reactions. Molecular structure. Chemical reactivity/properties. Spectroscopic characterization of organic molecules. prereq: C- or better in 1062/1066 or 1072H/1076H
PHYS 1301W - Introductory Physics for Science and Engineering I (PHYS, WI)
Credits: 4.0 [max 4.0]
Course Equivalencies: Phys 1201W/1301W/1401V/1501V
Typically offered: Every Fall, Spring & Summer
Use of fundamental principles to solve quantitative problems. Motion, forces, conservation principles, structure of matter. Applications to mechanical systems. Prereq or Concurrent: MATH 1271/1371/1371H or equivalent
PHYS 1401V - Honors Physics I (PHYS, WI)
Credits: 4.0 [max 4.0]
Course Equivalencies: Phys 1201W/1301W/1401V/1501V
Grading Basis: A-F only
Typically offered: Every Fall
Comprehensive, calculus-level general physics. Emphasizes use of fundamental principles to solve quantitative problems. Description of motion, forces, conservation principles. Structure of matter, with applications to mechanical systems. Prereq: Honors program or with permission, Prereq or Concurrent: MATH 1271/1371/1571H or equivalent
PHYS 1302W - Introductory Physics for Science and Engineering II (PHYS, WI)
Credits: 4.0 [max 4.0]
Course Equivalencies: Phys 1202W/1302W/1402V/1502V
Typically offered: Every Fall & Spring
Use of fundamental principles to solve quantitative problems. Motion, forces, conservation principles, fields, structure of matter. Applications to electromagnetic phenomena. Prereq: PHYS 1301 or equivalent, Prereq or Concurrent: MATH 1272/1372/1572H or equivalent
PHYS 1402V - Honors Physics II (PHYS, WI)
Credits: 4.0 [max 4.0]
Course Equivalencies: Phys 1202W/1302W/1402V/1502V
Grading Basis: A-F only
Typically offered: Every Spring
Fundamental principles to solve quantitative problems. Description of motion, forces, conservation principles, fields. Structure of matter, with applications to electro-magnetic phenomena. Honors program or with permission, PHYS 1401V or equivalent, Prereq or CC: MATH 1272/1372/1572H or equivalent
BMEN 2401 - Programming for Biomedical Engineers
Credits: 2.0 [max 2.0]
Grading Basis: A-F only
Typically offered: Every Fall
Introduction to structured programming in biomedical engineering. Development of programming skills/logic relevant for numerical methods used for analyzing biomedical signals and solving algebraic/differential equations using Matlab. Programming logic/structured programming, introduction to scientific computation motivated by signal representations. Weekly lecture, computer lab modules. prereq: CSE student, PHYS 1302W, and MATH 2373 or MATH 2374
BMEN 2501 - Cellular and Molecular Biology for Biomedical Engineers (BIOL)
Credits: 4.0 [max 4.0]
Grading Basis: A-F or Aud
Typically offered: Every Fall
Fundamentals of cellular/molecular biology. Chemistry of proteins, lipids, and nucleic acids. Applications to biomedical engineering. Function/dynamics of intracellular structures and differentiated animal cells. Application of physical/chemical fundamentals to modeling cellular/subcellular processes. Lecture/lab. prereq: concurrent registration is required (or allowed) in CHEM 1022, concurrent registration is required (or allowed) in MATH 1372, concurrent registration is required (or allowed) in PHYS 1302, CSE student
STAT 3021 - Introduction to Probability and Statistics
Credits: 3.0 [max 3.0]
Course Equivalencies: STAT 3021/STAT 3021H
Typically offered: Every Fall, Spring & Summer
This is an introductory course in statistics whose primary objectives are to teach students the theory of elementary probability theory and an introduction to the elements of statistical inference, including testing, estimation, and confidence statements. prereq: Math 1272
BMEN 1601 - Biomedical Engineering Undergraduate Seminar I
Credits: 1.0 [max 1.0]
Grading Basis: A-F only
Typically offered: Every Fall
Introduction to biomedical engineering from academic/industrial perspectives. Survey of current/emerging areas. prereq: CSE student or instructor approval.
BMEN 1602 - Biomedical Engineering Undergraduate Seminar II
Credits: 1.0 [max 1.0]
Grading Basis: A-F only
Typically offered: Every Spring
Continuation of 1601. Emphasizes biomedical engineering design and numerical analysis. prereq: CSE student or instructor approval.
BMEN 3011 - Biomechanics
Credits: 3.0 [max 3.0]
Grading Basis: A-F or Aud
Typically offered: Every Fall
Statics, dynamics, deformable body mechanics applied to biological/biomedical problems. Mechanical properties of biological/commonly used biomedical engineering materials. Techniques for numerical solution of biomechanics problems. Lecture/Discussion. prereq: BME Upper Div or dept consent
BMEN 3111 - Biomedical Transport Processes
Credits: 3.0 [max 3.0]
Grading Basis: A-F or Aud
Typically offered: Every Spring
Principles of momentum, heat, mass transfer illustrated with applications in physiological processes. Fluid mechanics, heat condition, mass diffusion, convection. Lecture. prereq: [3011, 3015], [BMEN upper div or dept consent]
BMEN 3211 - Bioelectricity and Bioinstrumentation
Credits: 3.0 [max 3.0]
Course Equivalencies: BMEn 3201/BMEn 3211
Grading Basis: A-F or Aud
Typically offered: Every Fall
Principles of electrical phenomena, instruments relevant to biomedical applications. Lecture/discussion. prereq: BME Upper Div or dept consent
BMEN 3311 - Biomaterials
Credits: 3.0 [max 3.0]
Grading Basis: A-F or Aud
Typically offered: Every Spring
Principles of biomaterials. Organic chemistry/biochemistry of natural/artificial biomaterials. Physical characterization/mechanical testing. Biomedical applications. Lecture/discussion. prereq: 2101, [BMEn Upper Div or dept consent]
BMEN 3411 - Biomedical Systems Analysis
Credits: 3.0 [max 3.0]
Grading Basis: A-F or Aud
Typically offered: Every Spring
Quantitative analysis of physiological/biological systems. First/second order systems, linear time-invariant systems, systems classification/identification. Linear control theory/controller synthesis. Electrical, mechanical, thermal, chemical/biomedical control systems. prereq: 3211, [BME Upper Div or dept consent]
BMEN 4001W - Biomedical Engineering Design I (WI)
Credits: 3.0 [max 3.0]
Grading Basis: A-F or Aud
Typically offered: Every Fall
Design/analysis of biomedical devices/technologies. Students work in teams on open ended design project, present completed work at design show. prereq: 2501, 3001, 3101, 3201, 3301, 3701
BMEN 4002W - Biomedical Engineering Design II (WI)
Credits: 3.0 [max 3.0]
Grading Basis: A-F or Aud
Typically offered: Every Spring
Continuation of 4001W. prereq: 4001W
PHSL 3061 - Principles of Physiology
Credits: 4.0 [max 4.0]
Course Equivalencies: Phsl 3063/Phsl 3071
Typically offered: Every Fall
Human physiology with emphasis on quantitative aspects. Organ systems (circulation, respiration, gastrointestinal, renal, endocrine, muscle, peripheral and central nervous systems), cellular transport processes, and scaling in biology. prereq: 1 year college chem and physics and math through integral calculus
PHSL 3701 - Physiology Laboratory
Credits: 2.0 [max 2.0]
Course Equivalencies: BMEn 3701/Phsl 3701/Phsl 3063/
Grading Basis: A-F or Aud
Typically offered: Every Fall
Experiments in physiology. Emphasizes quantitative aspects, including analysis of organ systems. prereq: Physiology major
BMEN 2101 - Biomedical Thermodynamics and Kinetics
Credits: 3.0 [max 3.0]
Grading Basis: A-F only
Typically offered: Every Spring
Introduction to thermodynamics and kinetics, framed in the context of biomedical technologies and applications. Topics include principles of probability, extremum principles and equilibria, entropy & the Boltzmann distribution law, thermodynamic driving forces, solutions & mixtures, solvation & transfer of molecules between phases, phase transitions, biological rate processes, noncovalent binding interactions, binding equilibria and kinetics, enzyme kinetics, gene expression, protein trafficking, and network dynamics. Prerequisites BMEN 2501, CHEM 1022, MATH 2373, concurrent registration is required (or allowed) in MATH 2374
BMEN 3015 - Biomechanics Lab
Credits: 1.0 [max 1.0]
Grading Basis: A-F or Aud
Typically offered: Periodic Fall
Lab accompanies BMEn 3011 Biomechanics. prereq: [BME UD or dept consent], concurrent registration is required (or allowed) in 3011
BMEN 3215 - Bioelectricity and Bioinstrumentation Lab
Credits: 1.0 [max 1.0]
Grading Basis: A-F or Aud
Typically offered: Periodic Fall
Lab accompanies BMEn 3211 Bioelectricity/Bioinstrumentation. prereq: [BMEN Upper Div or dept consent], concurrent registration is required (or allowed) in 3211
BMEN 3315 - Biomaterials Lab
Credits: 1.0 [max 1.0]
Grading Basis: A-F or Aud
Typically offered: Every Spring
Lab accompanies BMEn 3311 Biomaterials. prereq: [2101, concurrent registration is required (or allowed) in 3311], [BMEN Upper Div or dept consent]
BMEN 3115 - Biomedical Transport Processes Lab
Credits: 1.0 [max 1.0]
Grading Basis: A-F or Aud
Typically offered: Every Spring
Lab accompanies BMEn 3111 Biomedical Transport Processes. prereq: [3011, concurrent registration is required (or allowed) in 3111], [BMEN upper div or dept consent]
BMEN 3415 - Biomedical Systems Analysis Lab
Credits: 1.0 [max 1.0]
Grading Basis: A-F or Aud
Typically offered: Every Spring
Lab accompanies BMEn 3411 Biomedical Systems Analysis. prereq: [3211, concurrent registration is required (or allowed) in 3411], [BME Upper Div or dept consent]
MATH 2374 - CSE Multivariable Calculus and Vector Analysis
Credits: 4.0 [max 4.0]
Course Equivalencies: Math 2263/Math 2374/Math 2573H
Typically offered: Every Fall & Spring
Derivative as linear map. Differential/integral calculus of functions of several variables, including change of coordinates using Jacobians. Line/surface integrals. Gauss, Green, Stokes theorems. Use of computer technology. prereq: [1272 or 1282 or 1372 or 1572] w/grade of at least C-, CSE or pre-Bioprod/Biosys Engr
MATH 2263 - Multivariable Calculus
Credits: 4.0 [max 4.0]
Course Equivalencies: Math 2263/Math 2374/Math 2573H
Typically offered: Every Fall, Spring & Summer
Derivative as linear map. Differential/integral calculus of functions of several variables, including change of coordinates using Jacobians. Line/surface integrals. Gauss, Green, Stokes Theorems. prereq: [1272 or 1372 or 1572] w/grade of at least C-