Twin Cities campus

This is archival data. This system was retired as of August 21, 2023 and the information on this page has not been updated since then. For current information, visit catalogs.umn.edu.

 
Twin Cities Campus

Astrophysics B.S.Astrop.

Astrophysics, Minnesota Institute for
College of Science and Engineering
  • Program Type: Baccalaureate
  • Requirements for this program are current for Fall 2013
  • Required credits to graduate with this degree: 120
  • Required credits within the major: 43 to 56
  • Degree: Bachelor of Science in Astrophysics
The astrophysics program enables students to tackle complex and ill-defined problems within the physical sciences. The program prepares students for careers in professional astronomy, computational astrophysics, secondary education in the physical sciences, ROTC programs in the Air Force or Navy, data analysis, or laboratory science.
Program Delivery
This program is available:
  • via classroom (the majority of instruction is face-to-face)
Admission Requirements
Students must complete 8 courses before admission to the program.
Freshman and transfer students are usually admitted to pre-major status before admission to this major.
For information about University of Minnesota admission requirements, visit the Office of Admissions website.
Required prerequisites
Mathematics Core
MATH 1271 - Calculus I [MATH] (4.0 cr)
or MATH 1371 - CSE Calculus I [MATH] (4.0 cr)
MATH 1272 - Calculus II (4.0 cr)
or MATH 1372 - CSE Calculus II (4.0 cr)
MATH 2243 - Linear Algebra and Differential Equations (4.0 cr)
or MATH 2373 - CSE Linear Algebra and Differential Equations (4.0 cr)
Required prerequisites
Physics Core
PHYS 1301W - Introductory Physics for Science and Engineering I [PHYS, WI] (4.0 cr)
or PHYS 1401V - Honors Physics I [PHYS, WI] (4.0 cr)
PHYS 1302W - Introductory Physics for Science and Engineering II [PHYS, WI] (4.0 cr)
or PHYS 1402V - Honors Physics II [PHYS, WI] (4.0 cr)
PHYS 2303 - Physics III: Physics of Matter (4.0 cr)
or PHYS 2403H {Inactive} (4.0 cr)
or PHYS 2503 - Physics III: Intro to Waves, Optics, and Special Relativity (4.0 cr)
General Requirements
All students in baccalaureate degree programs are required to complete general University and college requirements including writing and liberal education courses. For more information about University-wide requirements, see the liberal education requirements. Required courses for the major, minor or certificate in which a student receives a D grade (with or without plus or minus) do not count toward the major, minor or certificate (including transfer courses).
Program Requirements
Students interested in astrophysics are encouraged to take AST 1011H.
Astrophysics Core
PHYS 2201 - Introductory Thermodynamics and Statistical Physics (4.0 cr)
PHYS 2601 - Quantum Physics (4.0 cr)
AST 2001 - Fundamental Astrophysics (4.0 cr)
AST 4994W - Directed Research [WI] (2.0-5.0 cr)
PHYS 2605 {Inactive} (3.0 cr)
PHYS 4001 - Analytical Mechanics (4.0 cr)
PHYS 4002 - Electricity and Magnetism (4.0 cr)
Take 2 or more course(s) from the following:
· AST 4xxx
· AST 5xxx
MATH 2283 {Inactive} (3.0 cr)
or MATH 3xxx
or MATH 4xxx
MATH 2263 - Multivariable Calculus (4.0 cr)
or MATH 2374 - CSE Multivariable Calculus and Vector Analysis (4.0 cr)
Astrophysics Focus
Data Analysis Specialist
This emphasis prepares students for careers in corporate and government labs and research divisions. Examples are programming, image processing, laboratory instrumentation, and general data analysis. Suggested courses are listed below.
Take 16 or more credit(s) from the following:
· AST 5201 - Methods of Experimental Astrophysics (4.0 cr)
· CSCI 1113 - Introduction to C/C++ Programming for Scientists and Engineers (4.0 cr)
· EE 3005 - Fundamentals of Electrical Engineering (4.0 cr)
· PHYS 4051 - Methods of Experimental Physics I (5.0 cr)
· PHYS 4052W - Methods of Experimental Physics II [WI] (5.0 cr)
-OR-
Professional Astronomer
This emphasis prepares students for graduate school in astronomy. The program is similar to doing a double major in astrophysics and physics. The program emphasizes observational astronomy. 16 credits of AST, MATH, CHEM, PHYS, GEO, EE, or CSCI (3xxx, 4xxx, 5xxx) Suggested courses are listed below.
Take 16 or more credit(s) from the following:
· PHYS 4101 - Quantum Mechanics (4.0 cr)
· PHYS 4201 - Statistical and Thermal Physics (3.0 cr)
· Take 0 or more course(s) from the following:
· AST 4xxx
· AST 5xxx
· Take 0 or more credit(s) from the following:
· CHEM 3xxx
· CHEM 4xxx
· CHEM 5xxx
· Take 0 or more course(s) from the following:
· CSCI 3xxx
· CSCI 4xxx
· CSCI 5xxx
· Take 0 or more course(s) from the following:
· EE 3xxx
· EE 4xxx
· EE 5xxx
· Take 0 or more course(s) from the following:
· GEO 3xxx
· GEO 4xxx
· GEO 5xxx
· Take 0 or more course(s) from the following:
· MATH 3xxx
· MATH 4xxx
· MATH 5xxx
· Take 0 or more course(s) from the following:
· PHYS 3xxx
· PHYS 4xxx
· PHYS 5xxx
-OR-
Secondary Education
This emphasis prepares students for entry to a master's program in secondary science education. In addition to the courses listed below, students must complete 100 hours of in-class experience across at least two semesters.
PSY 1001 - Introduction to Psychology [SOCS] (4.0 cr)
HSCI 1814 - Revolutions in Science: The Babylonians to Newton [HIS, GP] (3.0-4.0 cr)
or HSCI 4121W - History of 20th-Century Physics [WI] (3.0 cr)
PHIL 1005 - Scientific Reasoning (4.0 cr)
or PHIL 3601W - Scientific Thought [WI] (4.0 cr)
AST 5201 - Methods of Experimental Astrophysics (4.0 cr)
or Physics Research
This course pair replaces AST 4994 in the student's program.
PHYS 4051 - Methods of Experimental Physics I (5.0 cr)
PHYS 4052W - Methods of Experimental Physics II [WI] (5.0 cr)
-OR-
Technical Electives
Select 16 credits in consultation with your adviser.
Program Sub-plans
A sub-plan is not required for this program.
Honors UHP
This is an honors sub-plan.
Students admitted to the University Honors Program (UHP) must fulfill UHP requirements, in addition to degree program requirements. Honors courses used to fulfill degree program requirements will also fulfill UHP requirements. Current departmental honors course offerings are listed at: http://www.honors.umn.edu/academics/curriculum/dept_courses_current.html. Honors students complete an honors thesis project in the final year, most often in conjunction with an honors thesis course, or with an honors directed studies, or honors directed research course. Students select honors courses and plan for a thesis project in consultation with their UHP adviser and their departmental faculty adviser.
 
More program views..
View college catalog(s):
· College of Science and Engineering

View future requirement(s):
· Fall 2022
· Fall 2020
· Fall 2018
· Fall 2017
· Fall 2016
· Spring 2014

View sample plan(s):
· Astrophysics with Data Analysis Specialist Focus

View checkpoint chart:
· Astrophysics B.S.Astrop.
View PDF Version:
Search.
Search Programs

Search University Catalogs
Related links.

College of Science and Engineering

TC Undergraduate Admissions

TC Undergraduate Application

One Stop
for tuition, course registration, financial aid, academic calendars, and more
 
MATH 1271 - Calculus I (MATH)
Credits: 4.0 [max 4.0]
Course Equivalencies: Math 1271/Math 1381/Math 1571/
Typically offered: Every Fall, Spring & Summer
Differential calculus of functions of a single variable, including polynomial, rational, exponential, and trig functions. Applications, including optimization and related rates problems. Single variable integral calculus, using anti-derivatives and simple substitution. Applications may include area, volume, work problems. prereq: 4 yrs high school math including trig or satisfactory score on placement test or grade of at least C- in [1151 or 1155]
MATH 1371 - CSE Calculus I (MATH)
Credits: 4.0 [max 4.0]
Course Equivalencies: Math 1271/Math 1381/Math 1571/
Typically offered: Every Fall & Spring
Differentiation of single-variable functions, basics of integration of single-variable functions. Applications: max-min, related rates, area, curve-sketching. Use of calculator, cooperative learning. prereq: CSE or pre-bioprod concurrent registration is required (or allowed) in biosys engn (PRE), background in [precalculus, geometry, visualization of functions/graphs], instr consent; familiarity with graphing calculators recommended
MATH 1272 - Calculus II
Credits: 4.0 [max 4.0]
Course Equivalencies: Math 1272/Math 1282/Math 1372/
Typically offered: Every Fall, Spring & Summer
Techniques of integration. Calculus involving transcendental functions, polar coordinates. Taylor polynomials, vectors/curves in space, cylindrical/spherical coordinates. prereq: [1271 or equiv] with grade of at least C-
MATH 1372 - CSE Calculus II
Credits: 4.0 [max 4.0]
Course Equivalencies: Math 1272/Math 1282/Math 1372/
Typically offered: Every Spring
Techniques of integration. Calculus involving transcendental functions, polar coordinates, Taylor polynomials, vectors/curves in space, cylindrical/spherical coordinates. Use of calculators, cooperative learning. prereq: Grade of at least C- in [1371 or equiv], CSE or pre-Bioprod/Biosys Engr
MATH 2243 - Linear Algebra and Differential Equations
Credits: 4.0 [max 4.0]
Course Equivalencies: Math 2243/Math 2373/Math 2574H
Typically offered: Every Fall, Spring & Summer
Linear algebra: basis, dimension, matrices, eigenvalues/eigenvectors. Differential equations: first-order linear, separable; second-order linear with constant coefficients; linear systems with constant coefficients. prereq: [1272 or 1282 or 1372 or 1572] w/grade of at least C-
MATH 2373 - CSE Linear Algebra and Differential Equations
Credits: 4.0 [max 4.0]
Course Equivalencies: Math 2243/Math 2373/Math 2574H
Typically offered: Every Fall & Spring
Linear algebra: basis, dimension, eigenvalues/eigenvectors. Differential equations: linear equations/systems, phase space, forcing/resonance, qualitative/numerical analysis of nonlinear systems, Laplace transforms. Use of computer technology. prereq: [1272 or 1282 or 1372 or 1572] w/grade of at least C-, CSE or pre-Bio Prod/Biosys Engr
PHYS 1301W - Introductory Physics for Science and Engineering I (PHYS, WI)
Credits: 4.0 [max 4.0]
Course Equivalencies: Phys 1201W/1301W/1401V/1501V
Typically offered: Every Fall, Spring & Summer
Use of fundamental principles to solve quantitative problems. Motion, forces, conservation principles, structure of matter. Applications to mechanical systems. Prereq or Concurrent: MATH 1271/1371/1371H or equivalent
PHYS 1401V - Honors Physics I (PHYS, WI)
Credits: 4.0 [max 4.0]
Course Equivalencies: Phys 1201W/1301W/1401V/1501V
Grading Basis: A-F only
Typically offered: Every Fall
Comprehensive, calculus-level general physics. Emphasizes use of fundamental principles to solve quantitative problems. Description of motion, forces, conservation principles. Structure of matter, with applications to mechanical systems. Prereq: Honors program or with permission, Prereq or Concurrent: MATH 1271/1371/1571H or equivalent
PHYS 1302W - Introductory Physics for Science and Engineering II (PHYS, WI)
Credits: 4.0 [max 4.0]
Course Equivalencies: Phys 1202W/1302W/1402V/1502V
Typically offered: Every Fall & Spring
Use of fundamental principles to solve quantitative problems. Motion, forces, conservation principles, fields, structure of matter. Applications to electromagnetic phenomena. Prereq: PHYS 1301 or equivalent, Prereq or Concurrent: MATH 1272/1372/1572H or equivalent
PHYS 1402V - Honors Physics II (PHYS, WI)
Credits: 4.0 [max 4.0]
Course Equivalencies: Phys 1202W/1302W/1402V/1502V
Grading Basis: A-F only
Typically offered: Every Spring
Fundamental principles to solve quantitative problems. Description of motion, forces, conservation principles, fields. Structure of matter, with applications to electro-magnetic phenomena. Honors program or with permission, PHYS 1401V or equivalent, Prereq or CC: MATH 1272/1372/1572H or equivalent
PHYS 2303 - Physics III: Physics of Matter
Credits: 4.0 [max 4.0]
Course Equivalencies: Phys 2303/2403H/2503/2503H
Typically offered: Every Spring
Thermodynamics, mechanical/electromagnetic waves, optics, quantum theory. Applications of quantum nature of solids. prereq: 1302, [MATH 1272 or MATH 1372 or MATH 1572H], [MatSci or EE] student
PHYS 2503 - Physics III: Intro to Waves, Optics, and Special Relativity
Credits: 4.0 [max 4.0]
Course Equivalencies: Phys 2303/2403H/2503/2503H
Typically offered: Every Fall
Third semester of introductory physics. Mechanical/electromagnetic waves, optics, special relativity. prereq: 1302W or equivalent
PHYS 2201 - Introductory Thermodynamics and Statistical Physics
Credits: 4.0 [max 4.0]
Typically offered: Every Fall
Thermodynamics and its underlying statistical nature. Prereq: PHYS 1302W or equivalent
PHYS 2601 - Quantum Physics
Credits: 4.0 [max 4.0]
Typically offered: Every Spring
Introduction to quantum mechanics. Applications to atomic, molecular, condensed-matter, nuclear, elementary-particle, and statistical physics. Prereq: PHYS2503/2503H, Recommended Concurrent: Phys 3041
AST 2001 - Fundamental Astrophysics
Credits: 4.0 [max 4.0]
Typically offered: Every Fall & Spring
Physical principles and study of solar system, stars, galaxy, and universe. How observations/conclusions are made. prereq: [One yr calculus, PHYS 1302] or instr consent
AST 4994W - Directed Research (WI)
Credits: 2.0 -5.0 [max 5.0]
Grading Basis: A-F only
Typically offered: Every Fall & Spring
Independent research in observational or theoretical astrophysics. Senior Thesis for undergraduate astrophysics majors. Arranged with faculty member.
PHYS 4001 - Analytical Mechanics
Credits: 4.0 [max 4.0]
Typically offered: Every Fall
Analytic Newtonian mechanics. Mathematics beyond prerequisites developed as required. Prereq: PHYS 2503/2503H or equivalent, PHYS 3041
PHYS 4002 - Electricity and Magnetism
Credits: 4.0 [max 4.0]
Typically offered: Every Fall & Spring
Classical theory of electromagnetic fields using vector algebra and vector calculus. prereq: PHYS 3041, PHYS 2503/2503H or equivalent
MATH 2263 - Multivariable Calculus
Credits: 4.0 [max 4.0]
Course Equivalencies: Math 2263/Math 2374/Math 2573H
Typically offered: Every Fall, Spring & Summer
Derivative as linear map. Differential/integral calculus of functions of several variables, including change of coordinates using Jacobians. Line/surface integrals. Gauss, Green, Stokes Theorems. prereq: [1272 or 1372 or 1572] w/grade of at least C-
MATH 2374 - CSE Multivariable Calculus and Vector Analysis
Credits: 4.0 [max 4.0]
Course Equivalencies: Math 2263/Math 2374/Math 2573H
Typically offered: Every Fall & Spring
Derivative as linear map. Differential/integral calculus of functions of several variables, including change of coordinates using Jacobians. Line/surface integrals. Gauss, Green, Stokes theorems. Use of computer technology. prereq: [1272 or 1282 or 1372 or 1572] w/grade of at least C-, CSE or pre-Bioprod/Biosys Engr
AST 5201 - Methods of Experimental Astrophysics
Credits: 4.0 [max 4.0]
Typically offered: Spring Even Year
Contemporary astronomical techniques and instrumentation. Emphasizes data reduction and analysis, including image processing. Students make astronomical observations at O'Brien Observatory and use department's computing facilities for data analysis. Image processing packages include IRAF, AIPS, IDL, MIRA. prereq: Upper div CSE or grad or instr consent
CSCI 1113 - Introduction to C/C++ Programming for Scientists and Engineers
Credits: 4.0 [max 4.0]
Typically offered: Every Fall, Spring & Summer
Programming for scientists/engineers. C/C++ programming constructs, object-oriented programming, software development, fundamental numerical techniques. Exercises/examples from various scientific fields. The online modality for CSci 1113 will only be offered during the summer session. prereq: Math 1271 or Math 1371 or Math 1571H or instr consent.
EE 3005 - Fundamentals of Electrical Engineering
Credits: 4.0 [max 4.0]
Typically offered: Every Fall, Spring & Summer
Fundamentals of analog electronics, digital electronics, and power systems. Circuit analysis, electronic devices and applications, digital circuits, microprocessor systems, operational amplifiers, transistor amplifiers, frequency response, magnetically coupled circuits, transformers, steady state power analysis. prereq: Math 2243, Phys 1302; not for EE majors
PHYS 4051 - Methods of Experimental Physics I
Credits: 5.0 [max 5.0]
Typically offered: Every Fall
Contemporary experimental techniques. Introduction to modern analog and digital electronics from an experimental viewpoint. Use of computers for data acquisition and experimental control. Statistics of data analysis. Prereq or Concurrent PHYS 3605W, PHYS 3041
PHYS 4052W - Methods of Experimental Physics II (WI)
Credits: 5.0 [max 5.0]
Typically offered: Every Spring
Second semester of laboratory sequence. Contemporary experimental techniques illustrated by experiments with data analysis. Students design and execute an experimental project. Lectures on specialized topics of professional concern. prereq: PHYS 4051
PHYS 4101 - Quantum Mechanics
Credits: 4.0 [max 4.0]
Typically offered: Every Fall
Mathematical techniques of quantum mechanics. Schrodinger Equation and simple applications. General structure of wave mechanics. Operator methods, perturbation theory, radiation from atoms. Prereq: PHYS 3041, PHYS 2601
PHYS 4201 - Statistical and Thermal Physics
Credits: 3.0 [max 3.0]
Typically offered: Every Fall
Principles of thermodynamics and statistical mechanics. Selected applications such as kinetic theory, transport theory, and phase transitions. Prereq: PHYS 3041, PHYS 2201, PHYS 2601
PSY 1001 - Introduction to Psychology (SOCS)
Credits: 4.0 [max 4.0]
Course Equivalencies: PSTL 1281/Psy 1001/Psy 1001H
Typically offered: Every Fall, Spring & Summer
Scientific study of human behavior. Problems, methods, findings of modern psychology.
HSCI 1814 - Revolutions in Science: The Babylonians to Newton (HIS, GP)
Credits: 3.0 -4.0 [max 4.0]
Course Equivalencies: HSci 1814/HSci 3814
Typically offered: Every Fall & Spring
Development and changing nature of sciences in their cultural context. Babylonian/Greek science. Decline/transmission of Greek science. Scientific Revolution (1500-1700) from Copernicus to Newton.
HSCI 4121W - History of 20th-Century Physics (WI)
Credits: 3.0 [max 3.0]
Course Equivalencies: HSci 4121/Phys 4121
Grading Basis: OPT No Aud
Typically offered: Periodic Spring
The transition from classical to modern physics (relativity, quantum) and its architects (from Planck and Einstein to Heisenberg and Schrödinger). The WWII bomb projects in the US and in Germany. Post-war developments (solid state, particle physics). Prereq: calculus or permission from the instructor.
PHIL 1005 - Scientific Reasoning
Credits: 4.0 [max 4.0]
Course Equivalencies: Phil 1005/Phil 1005H
Typically offered: Every Fall
How does science work? What is scientific method? How to evaluate scientific information in popular media or specialized publications, especially when it relates to technology used in everyday life? General reasoning skills. prereq: [1st or 2nd] yr student or instr consent
PHIL 3601W - Scientific Thought (WI)
Credits: 4.0 [max 4.0]
Typically offered: Every Fall & Spring
Science influences us daily, shaping how we understand ourselves and interpret nature. This course is an introduction to how scientists reason about the world, what that means for our lives, and the status of science as a human activity. What is science and what?s so great about it? Is science the ultimate authority on the world and our place in it? This course examines the authority of science, how scientists reason, and science?s status as a human activity. prereq: One course in philosophy or natural science
AST 5201 - Methods of Experimental Astrophysics
Credits: 4.0 [max 4.0]
Typically offered: Spring Even Year
Contemporary astronomical techniques and instrumentation. Emphasizes data reduction and analysis, including image processing. Students make astronomical observations at O'Brien Observatory and use department's computing facilities for data analysis. Image processing packages include IRAF, AIPS, IDL, MIRA. prereq: Upper div CSE or grad or instr consent
PHYS 4051 - Methods of Experimental Physics I
Credits: 5.0 [max 5.0]
Typically offered: Every Fall
Contemporary experimental techniques. Introduction to modern analog and digital electronics from an experimental viewpoint. Use of computers for data acquisition and experimental control. Statistics of data analysis. Prereq or Concurrent PHYS 3605W, PHYS 3041
PHYS 4052W - Methods of Experimental Physics II (WI)
Credits: 5.0 [max 5.0]
Typically offered: Every Spring
Second semester of laboratory sequence. Contemporary experimental techniques illustrated by experiments with data analysis. Students design and execute an experimental project. Lectures on specialized topics of professional concern. prereq: PHYS 4051