Twin Cities campus

This is archival data. This system was retired as of August 21, 2023 and the information on this page has not been updated since then. For current information, visit catalogs.umn.edu.

 
Twin Cities Campus

Neuroscience B.S.

Neuroscience
College of Biological Sciences
  • Program Type: Baccalaureate
  • Requirements for this program are current for Fall 2014
  • Required credits to graduate with this degree: 120
  • Required credits within the major: 78 to 83
  • Degree: Bachelor of Science
Neuroscience majors study the molecular and cellular building blocks that make up the brain and control its function. The study of neuroscience aims to understand how complex animals, including humans, see, hear, move, think, and feel. Neuroscientists also study abnormalities that cause diseases and mechanisms that underlie pain and addiction. A B.S. in neuroscience prepares undergraduates to pursue advanced studies in neuroscience, professional degrees in medicine, or related fields.
Program Delivery
This program is available:
  • via classroom (the majority of instruction is face-to-face)
Admission Requirements
Freshmen are usually admitted to pre-major status before admission to this major.
A GPA above 2.0 is preferred for the following:
  • 2.50 transferring from another University of Minnesota college
  • 2.50 transferring from outside the University
For information about University of Minnesota admission requirements, visit the Office of Admissions website.
General Requirements
All students in baccalaureate degree programs are required to complete general University and college requirements including writing and liberal education courses. For more information about University-wide requirements, see the liberal education requirements. Required courses for the major, minor or certificate in which a student receives a D grade (with or without plus or minus) do not count toward the major, minor or certificate (including transfer courses).
Program Requirements
Nature of Life/Nature of Science and Research
Nature of Life
BIOL 1805 - Nature of Life: Introducing New Students to the Biological Sciences (0.5 cr)
BIOL 1806 - Nature of Life, Part Two (0.5 cr)
BIOL 2905 - Nature of Life, Part III (0.5 cr)
BIOL 2906 - Nature of Life, Part IV (0.5 cr)
or Nature of Science and Reserach
BIOL 3001 - Nature of Science and Research (1.0 cr)
BIOL 2001 - Career Planning for Biologists (1.0 cr)
Quantitative Requirement
MATH 1271 - Calculus I [MATH] (4.0 cr)
or MATH 1241 - Calculus and Dynamical Systems in Biology [MATH] (4.0 cr)
Take 6 or more credit(s) from the following:
· BIOL 3270 {Inactive} (3.0 cr)
· CSCI 1133 - Introduction to Computing and Programming Concepts (4.0 cr)
· CSCI 3003 - Introduction to Computing in Biology (3.0 cr)
· MATH 1241 - Calculus and Dynamical Systems in Biology [MATH] (4.0 cr)
· MATH 1272 - Calculus II (4.0 cr)
· MATH 2243 - Linear Algebra and Differential Equations (4.0 cr)
· STAT 3011 - Introduction to Statistical Analysis [MATH] (4.0 cr)
· BIOL 3272 - Applied Biostatistics (4.0 cr)
or BIOL 5272 - Applied Biostatistics (4.0 cr)
Chemistry
Chemical Principles I
CHEM 1061 - Chemical Principles I [PHYS] (3.0 cr)
CHEM 1065 - Chemical Principles I Laboratory [PHYS] (1.0 cr)
Chemical Principles II
CHEM 1062 - Chemical Principles II [PHYS] (3.0 cr)
CHEM 1066 - Chemical Principles II Laboratory [PHYS] (1.0 cr)
Organic Chemistry
CHEM 2301 - Organic Chemistry I (3.0 cr)
CHEM 2311 - Organic Lab (4.0 cr)
CHEM 2302 - Organic Chemistry II (3.0 cr)
or CHEM 2304 {Inactive} (3.0 cr)
Physics
Students who take PHYS 1301W must have taken or have concurrent enrollment in MATH 1271. Students who take PHYS 1302W must have taken or have concurrent enrollment in MATH 1272.
Physics Sequence A (Preferred)
PHYS 1301W - Introductory Physics for Science and Engineering I [PHYS, WI] (4.0 cr)
PHYS 1302W - Introductory Physics for Science and Engineering II [PHYS, WI] (4.0 cr)
or Physics Sequence B
PHYS 1201W {Inactive} [PHYS, WI] (5.0 cr)
PHYS 1202W {Inactive} [PHYS, WI] (5.0 cr)
General Biology
BIOL 2002 {Inactive} [BIOL] (6.0 cr)
or BIOL 2002H {Inactive} [BIOL] (6.0 cr)
BIOL 2003 - Foundations of Biology for Biological Sciences Majors, Part II (3.0 cr)
or BIOL 2003H - Foundations of Biology for Biological Sciences Majors, Part II (3.0 cr)
BIOL 3004 - Foundations of Biology for Biological Sciences Majors, Part II Laboratory (3.0 cr)
or BIOL 3004H {Inactive} (3.0 cr)
Additional Core
Take 1 or more course(s) from the following:
· BIOL 3409 {Inactive} (3.0 cr)
· BIOL 3411 {Inactive} (3.0 cr)
· EEB 3811W - Animal Behavior in the Field [WI] (4.0 cr)
· BIOL 2012 {Inactive} (4.0 cr)
or BIOL 3211 - Physiology of Humans and Other Animals (3.0 cr)
BIOL 2005 - Animal Diversity Laboratory (2.0 cr)
or PHSL 3051 - Human Physiology (4.0 cr)
BIOL 2005 - Animal Diversity Laboratory (2.0 cr)
or PHSL 3061 - Principles of Physiology (4.0 cr)
BIOL 2005 - Animal Diversity Laboratory (2.0 cr)
Biology Core
BIOC 3021 - Biochemistry (3.0 cr)
or BIOC 4331 - Biochemistry I: Structure, Catalysis, and Metabolism in Biological Systems (4.0 cr)
BIOL 4003 - Genetics (3.0 cr)
BIOL 4004 - Cell Biology (3.0 cr)
Neuroscience Requirements
NSCI 3101 - Neurobiology I: Molecules, Cells, and Systems (3.0 cr)
NSCI 3102W - Neurobiology II: Perception and Behavior [WI] (3.0 cr)
NSCI 4101 - Development of the Nervous System: Cellular and Molecular Mechanisms (3.0 cr)
Students may use a maximum of seven credits of directed research toward a CBS degree.
Take 3 or more credit(s) from the following:
· NSCI 4105 - Neurobiology Laboratory I (3.0 cr)
· NSCI 4167 {Inactive} (1.0-3.0 cr)
· NSCI 4794W - Directed Research: Writing Intensive [WI] (3.0-5.0 cr)
· NSCI 4994 - Directed Research (1.0-6.0 cr)
Neuroscience Major Electives
Take 5 or more credit(s) including 2 or more sub-requirements(s) from the following:
Group A - Upper Level Courses
One course is required from Group A. Students may elect to take the Mind, Brain, Education section of EPSY 5200 (Special Topics: Psychological Foundations) to fulfill the Group A requirement. Students must submit a petition to the CBS Scholastics Committee to have this course applied to fulfill the Group A requirement.
· BMEN 5411 - Neural Engineering (3.0 cr)
or EEB 4330W - Animal Communication [WI] (3.0 cr)
or EEB 5221 {Inactive} (3.0 cr)
or GCD 4034 - Molecular Genetics and Genomics (3.0 cr)
or GCD 4134 {Inactive} (3.0 cr)
or GCD 4151 - Molecular Biology of Cancer (3.0 cr)
or GCD 5036 - Molecular Cell Biology (3.0 cr)
or MICB 4131 - Immunology (3.0 cr)
or NSC 5203 - Basic and Clinical Vision Science (3.0 cr)
or NSC 5461 - Cellular and Molecular Neuroscience (3.0 cr)
or NSC 5561 - Systems Neuroscience (4.0 cr)
or NSC 5661 - Behavioral Neuroscience (2.0 cr)
or NSC 8217 - Systems and Computational Neuroscience (2.0 cr)
or PHAR 4248 - Drugs of Abuse (2.0 cr)
or PSY 5036W - Computational Vision [WI] (3.0 cr)
or PSY 5038W - Introduction to Neural Networks [WI] (3.0 cr)
or PSY 5062 - Cognitive Neuropsychology (3.0 cr)
· Group B - The Scientific Method: History and Philosophy
One course required in Group B
· BIOL 5272 - Applied Biostatistics (4.0 cr)
or HMED 3001W - Health, Disease, and Healing I [HIS, WI] (4.0 cr)
or HMED 3002W - Health Care in History II [HIS, WI] (4.0 cr)
or HSCI 3211 - Biology and Culture in the 19th and 20th Centuries [HIS, CIV] (3.0 cr)
or HSCI 3242 - Navigating a Darwinian World [HIS] (3.0 cr)
or NSC 8320 - Readings in Neurobiology (1.0-4.0 cr)
or NSCI 3001W - Neuroscience and Society [CIV, WI] (4.0 cr)
or NSCI 4105 - Neurobiology Laboratory I (3.0 cr)
or PHCL 4001 - Mechanisms of Drug Action (2.0 cr)
or PHIL 3601W - Scientific Thought [WI] (4.0 cr)
or PHIL 4607 - Philosophy of the Biological Sciences (3.0 cr)
or STAT 3011 - Introduction to Statistical Analysis [MATH] (4.0 cr)
or STAT 3021 - Introduction to Probability and Statistics (3.0 cr)
Upper-division Writing Intensive within the major
Students are required to take one upper-division Writing Intensive course within the major. If that requirement has not been satisfied within the core major requirements, students must choose one course from the following list. Some of these courses may also fulfill other major requirements.
Take 0 - 1 course(s) from the following:
· BIOC 4793W - Directed Studies: Writing Intensive [WI] (1.0-7.0 cr)
· BIOC 4794W - Directed Research: Writing Intensive [WI] (3.0-5.0 cr)
· PMB 3005W - Plant Function Laboratory [WI] (2.0 cr)
· PMB 3007W - Plant, Algal, and Fungal Diversity and Adaptation [WI] (4.0 cr)
· BIOL 3408W {Inactive} [WI] (3.0 cr)
· BIOL 3411W {Inactive} [WI] (4.0 cr)
· BIOL 4793W - Directed Studies: Writing Intensive [WI] (1.0-7.0 cr)
· BIOL 4794W - Directed Research: Writing Intensive [WI] (3.0-5.0 cr)
· EEB 4330W - Animal Communication [WI] (3.0 cr)
· EEB 4609W - Ecosystem Ecology [ENV, WI] (3.0 cr)
· EEB 4793W - Directed Studies: Writing Intensive [WI] (1.0-7.0 cr)
· EEB 4794W - Directed Research: Writing Intensive [WI] (3.0-5.0 cr)
· GCD 4005W - Cell Biology-Writing Intensive [WI] (4.0 cr)
· GCD 4793W - Directed Studies: Writing Intensive [WI] (1.0-7.0 cr)
· GCD 4794W - Directed Research: Writing Intensive [WI] (3.0-5.0 cr)
· MICB 4141W {Inactive} [WI] (4.0 cr)
· MICB 4161W - Eukaryotic Microbiology [WI] (3.0 cr)
· MICB 4225W - Advanced Laboratory: Microbial Genetics [WI] (3.0 cr)
· MICB 4793W - Directed Studies: Writing Intensive [WI] (1.0-7.0 cr)
· MICB 4794W - Directed Research: Writing Intensive [WI] (3.0-5.0 cr)
· NSCI 3001W - Neuroscience and Society [CIV, WI] (4.0 cr)
· NSCI 3102W - Neurobiology II: Perception and Behavior [WI] (3.0 cr)
· NSCI 4793W - Directed Studies: Writing Intensive [WI] (1.0-6.0 cr)
· NSCI 4794W - Directed Research: Writing Intensive [WI] (3.0-5.0 cr)
· PMB 4516W - Plant Cell Biology: Writing Intensive [WI] (3.0 cr)
· PMB 4793W - Directed Studies: Writing Intensive [WI] (1.0-7.0 cr)
· PMB 4794W - Directed Research: Writing Intensive [WI] (3.0-5.0 cr)
 
More program views..
View college catalog(s):
· College of Biological Sciences
View future requirement(s):
· Fall 2023
· Spring 2023
· Fall 2022
· Fall 2021
· Spring 2021
· Fall 2020
· Spring 2020
· Fall 2019
· Spring 2019
· Fall 2018
· Spring 2018
· Fall 2017
· Spring 2017
· Fall 2016
· Spring 2016
· Fall 2015
· Spring 2015

View sample plan(s):
· Neuroscience
· Neuroscience (with CHEM 1015 and MATH 1151)

View checkpoint chart:
· Neuroscience B.S.
View PDF Version:
Search.
Search Programs

Search University Catalogs
Related links.

College of Biological Sciences

TC Undergraduate Admissions

TC Undergraduate Application

One Stop
for tuition, course registration, financial aid, academic calendars, and more
 
BIOL 1805 - Nature of Life: Introducing New Students to the Biological Sciences
Credits: 0.5 [max 0.5]
Grading Basis: S-N or Aud
Typically offered: Every Fall & Spring
Building on incoming student summer programming to get started in the Biological Sciences in CBS. Providing transition programming, academic success tools, college learning, and guidance as a foundation for success in the biological sciences. Introduction to the College of Biological Sciences community and opportunities through class content, guild activities, and peer mentoring. prereq: Fr in College of Biological Sciences
BIOL 1806 - Nature of Life, Part Two
Credits: 0.5 [max 0.5]
Grading Basis: S-N only
Typically offered: Every Spring
Second semester of Nature of Life with focus on building intentional pathway in CBS/student success/engagement. prereq: 1805
BIOL 2905 - Nature of Life, Part III
Credits: 0.5 [max 0.5]
Course Equivalencies: Biol 1807/2905
Grading Basis: S-N only
Typically offered: Every Fall
Reflect on aspirations, personal characteristics, experiences. Resources/practical tools to reach educational/professional goals. Special focus on developing personal/professional goals, articulating personal experiences in light of aspirations. prereq: 1805, 1806
BIOL 2906 - Nature of Life, Part IV
Credits: 0.5 [max 0.5]
Grading Basis: S-N only
Typically offered: Every Spring
Reflect on aspirations, personal characteristics, experiences. Resources/practical tools to reach educational/professional goals. Special focus on developing personal/professional goals, articulating personal experiences in light of aspirations. prereq: 2905
BIOL 3001 - Nature of Science and Research
Credits: 1.0 [max 1.0]
Grading Basis: S-N only
Typically offered: Every Fall
Explore how to read/use research papers. Role of research ethics. Financial, legal, regulatory oversight on research/other topics. **This course is for new CBS transfer students from other institutions. prereq: College-level biology
BIOL 2001 - Career Planning for Biologists
Credits: 1.0 [max 1.0]
Grading Basis: S-N or Aud
Typically offered: Every Fall & Spring
Course structured to provide career planning and exploration guidance based on individual's specific goals. Option to focus coursework on identifying career interests, exploring career options in the biological sciences, preparing for job or internship applications, or organizing graduate school application materials. Provides career coaching on topics related to resume writing, interviewing and professional relationship building, and introduces resources to engage in effective career exploration and planning in the biological sciences.
MATH 1271 - Calculus I (MATH)
Credits: 4.0 [max 4.0]
Course Equivalencies: Math 1271/Math 1381/Math 1571/
Typically offered: Every Fall, Spring & Summer
Differential calculus of functions of a single variable, including polynomial, rational, exponential, and trig functions. Applications, including optimization and related rates problems. Single variable integral calculus, using anti-derivatives and simple substitution. Applications may include area, volume, work problems. prereq: 4 yrs high school math including trig or satisfactory score on placement test or grade of at least C- in [1151 or 1155]
MATH 1241 - Calculus and Dynamical Systems in Biology (MATH)
Credits: 4.0 [max 4.0]
Typically offered: Every Fall & Spring
Differential/integral calculus with biological applications. Discrete/continuous dynamical systems. Models from fields such as ecology/evolution, epidemiology, physiology, genetic networks, neuroscience, and biochemistry. prereq: [4 yrs high school math including trig or satisfactory score on placement test or grade of at least C- in [1151 or 1155]], CBS student
CSCI 1133 - Introduction to Computing and Programming Concepts
Credits: 4.0 [max 4.0]
Course Equivalencies: CSci 1133/CSci 1133H
Typically offered: Every Fall, Spring & Summer
Fundamental programming concepts using Python language. Problem solving skills, recursion, object-oriented programming. Algorithm development techniques. Use of abstractions/modularity. Data structures/abstract data types. Develop programs to solve real-world problems. prereq: concurrent registration is required (or allowed) in MATH 1271 or concurrent registration is required (or allowed) in MATH 1371 or concurrent registration is required (or allowed) in MATH 1571H or instr consent
CSCI 3003 - Introduction to Computing in Biology
Credits: 3.0 [max 3.0]
Course Equivalencies: CSci 3003/CSci 5465
Typically offered: Fall Odd Year
This course builds computational skills needed to carry out basic data analysis tasks common in modern biology. Students will learn computing concepts (algorithm development, data structures, complexity analysis) along with practical programming skills in Python and R. No previous programming knowledge assumed. Prereq: introductory biology course.
MATH 1241 - Calculus and Dynamical Systems in Biology (MATH)
Credits: 4.0 [max 4.0]
Typically offered: Every Fall & Spring
Differential/integral calculus with biological applications. Discrete/continuous dynamical systems. Models from fields such as ecology/evolution, epidemiology, physiology, genetic networks, neuroscience, and biochemistry. prereq: [4 yrs high school math including trig or satisfactory score on placement test or grade of at least C- in [1151 or 1155]], CBS student
MATH 1272 - Calculus II
Credits: 4.0 [max 4.0]
Course Equivalencies: Math 1272/Math 1282/Math 1372/
Typically offered: Every Fall, Spring & Summer
Techniques of integration. Calculus involving transcendental functions, polar coordinates. Taylor polynomials, vectors/curves in space, cylindrical/spherical coordinates. prereq: [1271 or equiv] with grade of at least C-
MATH 2243 - Linear Algebra and Differential Equations
Credits: 4.0 [max 4.0]
Course Equivalencies: Math 2243/Math 2373/Math 2574H
Typically offered: Every Fall, Spring & Summer
Linear algebra: basis, dimension, matrices, eigenvalues/eigenvectors. Differential equations: first-order linear, separable; second-order linear with constant coefficients; linear systems with constant coefficients. prereq: [1272 or 1282 or 1372 or 1572] w/grade of at least C-
STAT 3011 - Introduction to Statistical Analysis (MATH)
Credits: 4.0 [max 4.0]
Course Equivalencies: AnSc 3011/ESPM 3012/Stat 3011/
Typically offered: Every Fall, Spring & Summer
Standard statistical reasoning. Simple statistical methods. Social/physical sciences. Mathematical reasoning behind facts in daily news. Basic computing environment.
BIOL 3272 - Applied Biostatistics
Credits: 4.0 [max 3.0]
Course Equivalencies: Biol 3272Biol 3272H//Biol 5272
Grading Basis: A-F only
Typically offered: Every Fall & Spring
Conceptual basis of statistical analysis. Statistical analysis of biological data. Data visualization, descriptive statistics, significance tests, experimental design, linear model, simple/multiple regression, general linear model. Lectures, computer lab. prereq: High school algebra; BIOL 2003 recommended
BIOL 5272 - Applied Biostatistics
Credits: 4.0 [max 3.0]
Course Equivalencies: Biol 3272Biol 3272H//Biol 5272
Grading Basis: A-F only
Typically offered: Every Fall & Spring
Conceptual basis of statistical analysis. Statistical analysis of biological data. Data visualization, descriptive statistics, significance tests, experimental design, linear model, simple/multiple regression, general linear model. Lectures, computer lab. prereq: High school algebra; BIOL 2003 recommended.
CHEM 1061 - Chemical Principles I (PHYS)
Credits: 3.0 [max 3.0]
Course Equivalencies: Chem 1061/ 1071/H/ 1081
Typically offered: Every Fall, Spring & Summer
Atomic theory, periodic properties of elements. Thermochemistry, reaction stoichiometry. Behavior of gases, liquids, and solids. Molecular/ionic structure/bonding. Organic chemistry and polymers. energy sources, environmental issues related to energy use. Prereq-Grade of at least C- in [1011 or 1015] or [passing placement exam, concurrent registration is required (or allowed) in 1065]; intended for science or engineering majors; concurrent registration is required (or allowed) in 1065; registration for 1065 must precede registration for 1061
CHEM 1065 - Chemical Principles I Laboratory (PHYS)
Credits: 1.0 [max 1.0]
Course Equivalencies: Chem 1065/Chem 1075H
Grading Basis: A-F only
Typically offered: Every Fall, Spring & Summer
Basic laboratory skills while investigating physical and chemical phenomena closely linked to lecture material. Experimental design, data collection and treatment, discussion of errors, and proper treatment of hazardous wastes. prereq: concurrent registration is required (or allowed) in 1061
CHEM 1062 - Chemical Principles II (PHYS)
Credits: 3.0 [max 3.0]
Course Equivalencies: Chem 1062/1072/1072H/1082/
Typically offered: Every Fall, Spring & Summer
Chemical kinetics. Radioactive decay. Chemical equilibrium. Solutions. Acids/bases. Solubility. Second law of thermodynamics. Electrochemistry/corrosion. Descriptive chemistry of elements. Coordination chemistry. Biochemistry. prereq: Grade of at least C- in 1061 or equiv, concurrent registration is required (or allowed) in 1066; registration for 1066 must precede registration for 1062
CHEM 1066 - Chemical Principles II Laboratory (PHYS)
Credits: 1.0 [max 1.0]
Course Equivalencies: Chem 1066/Chem 1076H
Grading Basis: A-F only
Typically offered: Every Fall, Spring & Summer
Basic laboratory skills while investigating physical and chemical phenomena closely linked to lecture material. Experimental design, data collection and treatment, discussion of errors, and proper treatment of hazardous wastes. prereq: concurrent registration is required (or allowed) in 1062
CHEM 2301 - Organic Chemistry I
Credits: 3.0 [max 3.0]
Course Equivalencies: Chem 2301/Chem 2331H
Typically offered: Every Fall, Spring & Summer
Organic compounds, constitutions, configurations, conformations, reactions. Molecular structure. Chemical reactivity/properties. Spectroscopic characterization of organic molecules. prereq: C- or better in 1062/1066 or 1072H/1076H
CHEM 2311 - Organic Lab
Credits: 4.0 [max 4.0]
Course Equivalencies: Chem 2311/Chem 2312H/2312
Typically offered: Every Fall, Spring & Summer
Laboratory techniques in synthesis, purification and characterization of organic compounds with an emphasis on green chemistry methodologies. prereq: Grade of at least C- in [2302] or [concurrent registration is required (or allowed) in 2302
CHEM 2302 - Organic Chemistry II
Credits: 3.0 [max 3.0]
Course Equivalencies: Chem 2302/Chem 2332HChem 2304
Prerequisites: Grade of at least C- in 2301
Typically offered: Every Fall, Spring & Summer
Reactions, synthesis, and spectroscopic characterization of organic compounds, organic polymers, and biologically important classes of organic compounds such as lipids, carbohydrates, amino acids, peptides, proteins, and nucleic acids. prereq: Grade of at least C- in 2301
PHYS 1301W - Introductory Physics for Science and Engineering I (PHYS, WI)
Credits: 4.0 [max 4.0]
Course Equivalencies: Phys 1201W/1301W/1401V/1501V
Typically offered: Every Fall, Spring & Summer
Use of fundamental principles to solve quantitative problems. Motion, forces, conservation principles, structure of matter. Applications to mechanical systems. Prereq or Concurrent: MATH 1271/1371/1371H or equivalent
PHYS 1302W - Introductory Physics for Science and Engineering II (PHYS, WI)
Credits: 4.0 [max 4.0]
Course Equivalencies: Phys 1202W/1302W/1402V/1502V
Typically offered: Every Fall & Spring
Use of fundamental principles to solve quantitative problems. Motion, forces, conservation principles, fields, structure of matter. Applications to electromagnetic phenomena. Prereq: PHYS 1301 or equivalent, Prereq or Concurrent: MATH 1272/1372/1572H or equivalent
BIOL 2003 - Foundations of Biology for Biological Sciences Majors, Part II
Credits: 3.0 [max 3.0]
Course Equivalencies: Biol 2003/Biol 2003H
Grading Basis: A-F only
Typically offered: Every Fall & Spring
Second of two courses. Biological concepts, from biomolecules to ecosystems. Ecology/biochemistry concepts within problem solving/application.
BIOL 2003H - Foundations of Biology for Biological Sciences Majors, Part II
Credits: 3.0 [max 3.0]
Course Equivalencies: Biol 2003/Biol 2003H
Grading Basis: A-F only
Typically offered: Every Fall & Spring
Second of two courses. Biological concepts, from biomolecules to ecosystems. Ecology/biochemistry concepts within problem solving/application.
BIOL 3004 - Foundations of Biology for Biological Sciences Majors, Part II Laboratory
Credits: 3.0 [max 3.0]
Course Equivalencies: Biol 3004/Biol 3004H
Grading Basis: A-F only
Typically offered: Every Fall & Spring
This course follows BIOL 1961 and is required for all CBS majors. Students design and perform research projects that will require an additional 4-to-6 hours per week of work outside of class; times to be arranged. Each section is devoted to a single research area; check the section details to see which sections correspond to each research area. Research projects in zebrafish environmental toxicology and zebrafish microbiome sections will require in-person work in the BIOL 3004 laboratory. Only students with previous command line coding experience should enroll for a computational microbiology section. All projects involve applying quantitative skills, scientific method, and modern biological tools to real-world questions. Prerequisite is Foundations of Biology Lab I: BIOL 1961, 1961H, 2002, or 2002H AND CHEM 1021, 1061, 1071H, or 1081. Credit will not be granted if credit has been received for: BIOL 3004H.
EEB 3811W - Animal Behavior in the Field (WI)
Credits: 4.0 [max 4.0]
Course Equivalencies: EEB 3411/3811W EEB 3412W/5412
Grading Basis: A-F or Aud
Typically offered: Every Summer
In this course we will learn general principles governing the evolution of animal behavior. Being conducted at a field station, the approach is hands-on experiential learning through the application of the scientific method to the study of animal behavior. Thus, we will learn animal behavior by becoming animal behaviorists. Animal behaviorists communicate to one another through written reports in peer-reviewed literature and through oral talks at meetings. We will do both of these. All of these experiences culminate in the design, execution and presentation (written and oral) of an independent research project. Therefore, it is appropriate that this course is designated as writing-intensive. Writing comprises 90 points out of the course total of 140 points, representing 64% of the course grade. This is course meets two days per week from 8AM to 12N and from 1PM to 5PM over a 5-week period in May/June at the Itasca Biological Station and Labs. prereq: Undergrad biology course Credit granted for only one of the following: EEB 3411, EEB 3412W, EEB 3811W, EEB 5412
BIOL 3211 - Physiology of Humans and Other Animals
Credits: 3.0 [max 3.0]
Course Equivalencies: AnSc 3301/AnSc 3303W/Biol 3211
Typically offered: Every Fall & Spring
Study of the various solutions to common physiological problems faced by humans, other vertebrates, and invertebrates. Core concepts in physiology including flow down gradients, homeostatsis, cell-cell communication, interdependence of body systems, cell membrane dynamics, and mathematical modeling of physiological processes. Active learning format. prereq: [1009 or 2003], [CHEM 1062/1066 or 1082/1086], [2005 is recommended]
BIOL 2005 - Animal Diversity Laboratory
Credits: 2.0 [max 2.0]
Course Equivalencies: Biol 2005/Biol 2012/Biol 3012
Typically offered: Every Fall, Spring & Summer
Dissection, direct observation of representatives of major animal groups.
PHSL 3051 - Human Physiology
Credits: 4.0 [max 4.0]
Course Equivalencies: Phsl 3050/Phsl 3051
Typically offered: Every Fall & Spring
How major organ systems function (nerve, muscle, circulation, respiration, endocrine, renal, gastrointestinal, temperature regulation and energy metabolism). Three one-hour lectures, two-hour lab. prereq: [BIOL 1009 or 1 yr college biol], 1 yr college chem
BIOL 2005 - Animal Diversity Laboratory
Credits: 2.0 [max 2.0]
Course Equivalencies: Biol 2005/Biol 2012/Biol 3012
Typically offered: Every Fall, Spring & Summer
Dissection, direct observation of representatives of major animal groups.
PHSL 3061 - Principles of Physiology
Credits: 4.0 [max 4.0]
Course Equivalencies: Phsl 3063/Phsl 3071
Typically offered: Every Fall
Human physiology with emphasis on quantitative aspects. Organ systems (circulation, respiration, gastrointestinal, renal, endocrine, muscle, peripheral and central nervous systems), cellular transport processes, and scaling in biology. prereq: 1 year college chem and physics and math through integral calculus
BIOL 2005 - Animal Diversity Laboratory
Credits: 2.0 [max 2.0]
Course Equivalencies: Biol 2005/Biol 2012/Biol 3012
Typically offered: Every Fall, Spring & Summer
Dissection, direct observation of representatives of major animal groups.
BIOC 3021 - Biochemistry
Credits: 3.0 [max 3.0]
Course Equivalencies: BioC 3021/BioC 3022/BioC 4331/
Typically offered: Every Fall, Spring & Summer
Fundamentals of biochemistry. Structure/function of nucleic acids, proteins, lipids, carbohydrates. Enzymes. Metabolism. DNA replication and repair, transcription, protein synthesis. Recommended prerequisites: Introductory biology (BIOL 1009 or BIOL 2003 or equivalent), organic chemistry (CHEM 2301 or CHEM 2081/2085 or equivalent). Note: CBS students should take BIOC 3022 not 3021.
BIOC 4331 - Biochemistry I: Structure, Catalysis, and Metabolism in Biological Systems
Credits: 4.0 [max 4.0]
Course Equivalencies: BioC 3021/BioC 3022/BioC 4331/
Typically offered: Every Fall & Spring
Advanced survey of structure/catalysis, metabolism/bioenergetics. prereq: (BIOL 1009 or 2003 or equiv) AND (Chem 2302 or CHEM 2081/2085 or equiv)
BIOL 4003 - Genetics
Credits: 3.0 [max 3.0]
Course Equivalencies: Biol 4003/GCD 3022
Typically offered: Every Fall, Spring & Summer
Genetic information, its transmission from parents to offspring, its expression in cells/organisms, and its course in populations. prereq: Biol 2003/2003H or BioC 3021 or BioC 4331 or grad
BIOL 4004 - Cell Biology
Credits: 3.0 [max 3.0]
Course Equivalencies: Biol 4004/GCD 3033/4005W
Typically offered: Every Fall, Spring & Summer
Processes fundamental to cells. Emphasizes eukaryotic cells. Assembly/function of membranes/organelles. Cell division, cell form/movement, intercellular communication, transport, secretion pathways. Cancer cells, differentiated cells. prereq: Completion of Biol 4003 is preferred, Biol2003/2003H or Biol4003 or grad
NSCI 3101 - Neurobiology I: Molecules, Cells, and Systems
Credits: 3.0 [max 3.0]
Course Equivalencies: Biol 3101/NSci 3101/Phsl 3101
Grading Basis: A-F or Aud
Typically offered: Every Fall, Spring & Summer
This course discusses the basic principles of cellular and molecular neurobiology and nervous systems. The main topics include: Organization of simple networks, neural systems and behavior; how the brain develops and the physiology and communication of neurons and glia; the molecular and genetic basis of cell organization; ion channel structure and function; the molecular basis of synaptic receptors; transduction mechanisms and second messengers; intracellular regulation of calcium; neurotransmitter systems, including excitation and inhibition, neuromodulation, system regulation, and the cellular basis of learning, memory, and cognition. The course is intended for students majoring in neuroscience, but is open to all students with the required prerequisites. This course is offered in person in the fall and spring semesters and online ONLY in the summer semester. The online summer section covers the same material at the same depth and breadth as the in person fall and spring sections of the course. However, the summer session is 13 weeks (fall and spring are 14 weeks), so the summer course will progress at a slightly faster pace. This is a 3 credit course, so it is expected that students will spend about 150 hours working on course material. This means that the average student can expect to spend ~12 hrs/week on the course. How much time individual students need to spend working on course material will depend on their learning styles.
NSCI 3102W - Neurobiology II: Perception and Behavior (WI)
Credits: 3.0 [max 3.0]
Course Equivalencies: Biol 3102W/NSci 3102W
Grading Basis: A-F or Aud
Typically offered: Every Fall & Spring
This is the second of the introductory neurobiology courses. It introduces fundamental concepts in systems and behavioral neuroscience with emphasis on the neural circuits underlying perception and sensorimotor integration. Lectures will examine the neural basis of specific behaviors arising from the oculomotor, visual and auditory systems and notes are available on Canvas. Topics include: retinal processing, functional organization in the cerebral cortex, neural circuit development, language, reward, and addiction. Students must learn to read scientific papers, and to understand the main ideas well enough to synthesize them and communicate them both orally and in writing. The course is writing intensive: exams are in essay and short answer format, and a 10-15 page term paper is required. The course is required for students majoring in neuroscience. The course consists of two hours of lecture and one hour of discussion per week.
NSCI 4101 - Development of the Nervous System: Cellular and Molecular Mechanisms
Credits: 3.0 [max 3.0]
Course Equivalencies: Nsci 4100/Nsci 8211
Grading Basis: A-F only
Typically offered: Every Spring
This course will extend students? understanding of fundamental concepts of biology and neuroscience through study of the cellular and molecular mechanisms that underlie development of the nervous system. Neurodevelopment provides a context in which to study processes active in many biological functions and diseases. Students will learn about each of the major cellular processes involved in development of the nervous system such as cell division and cell migration, and will learn about the function of molecules and signaling pathways active in each process. Human developmental pathologies will be studied as a means to better understand normal developmental processes. Some lectures will focus on current research, and students will be expected to read some scientific literature.
NSCI 4105 - Neurobiology Laboratory I
Credits: 3.0 [max 3.0]
Grading Basis: A-F or Aud
Typically offered: Every Fall
Principles, methods, and laboratory exercises for investigating neural mechanisms and examining experimental evidence.
NSCI 4794W - Directed Research: Writing Intensive (WI)
Credits: 3.0 -5.0 [max 42.0]
Course Equivalencies: BioC 4793W/Biol 4793W/EEB 4793
Grading Basis: S-N or Aud
Typically offered: Every Fall & Spring
Writing Intensive Directed Research is an individual-study, laboratory or field research experience in which the student is mentored directly by a faculty member. This course is not for students starting out in research. It is intended for students who already have been working in the research group of the mentor and have developed an independent research project. In this course the student will receive writing instruction through a writing support course (corresponding to 1 credit in addition to the credits of directed research time) that will meet weekly throughout the semester. The written output usually is in the form of a scientific paper describing the results of the student's project. Written output of the course must be revised during the semester and a schedule for writing, assessment, and revision needs to be in place at the beginning of the semester. The project needs to be explained in the campus Directed Research contract and the project and participation in the writing support course agreed on by both the student and faculty mentor. The contract must be approved by the Director of Undergraduate Studies (DUGS) for the major before the student is allowed to register. The contract includes a description of learning objectives for the course, agreement about how writing instruction will take place, confirmation of understanding of the timeline for when student writing will be handed in and how it will be assessed, methodology to be used by the student, and how assessment of learning will be conducted by the mentor. Additional oversight is established for this course - near the end of the semester the written output is submitted to the DUGS for the major. The DUGS is responsible to determine that the writing meets standards set by the CBS Education Policy Committee for quality of writing, appropriate citation of literature, well-constructed figures, tables, and legends (if present), appropriate use and interpretation of statistics (if present), conclusions that are supported by evidence, and well-formatted references. The DUGS can call for a final revision before a grade is given. This course is graded S/N by the writing support course instructor, and approval of both the DUGS and the research mentor is required before a grade of S can be given by the writing support course instructor. This course is for non-Honors students. Students should register for the number of research credits they intend to pursue plus 1 cr for the writing support component (for example: 2-4 cr of research + 1 cr writing support = 3-5 cr). prereq: department consent, instructor consent, no more than a total of 7 credits of 4793W, 4794W, 4993, 4994 combined can count towards CBS major requirements.
NSCI 4994 - Directed Research
Credits: 1.0 -6.0 [max 42.0]
Grading Basis: S-N or Aud
Typically offered: Every Fall, Spring & Summer
Lab or field investigation of selected areas of research. prereq: instr consent, dept consent; max of 7 cr of 4993 and/or 4994 may count toward major requirements
BMEN 5411 - Neural Engineering
Credits: 3.0 [max 3.0]
Typically offered: Every Fall
Theoretical basis. Signal processing techniques. Modeling of nervous system, its response to stimulation. Electrode design, neural modeling, cochlear implants, deep brain stimulation. Prosthetic limbs, micturition control, prosthetic vision. Brain machine interface, seizure prediction, optical imaging of nervous system, place cell recordings in hippocampus. prereq: 3401 recommended
EEB 4330W - Animal Communication (WI)
Credits: 3.0 [max 3.0]
Grading Basis: A-F or Aud
Typically offered: Fall Odd Year
Mechanisms of signal production/perception, signal propagation. How signals can convey information. How signalers, signals, receivers are adapted for communication by natural/sexual selection. prereq: (BIOL 1951 or BIOL 1951H or Biol 1009) and (EEB 3412W or EEB 3411 or EEB 3811W)
GCD 4034 - Molecular Genetics and Genomics
Credits: 3.0 [max 3.0]
Typically offered: Every Fall
Molecular genetics and genomics of eukaryotes. Course emphasizes mechanisms of gene regulation and how these are studied. Current strategies used to study the activity and function of genes and genomes, including the role of chromatin, will be covered. Techniques will include gene knockouts/knockdown, genome engineering, genome-wide analysis of RNA and protein expression and function, as well as genome-wide protein binding and chromatin interaction mapping. Technologies covered will include next-generations and third-generation sequencing and CRISPR-based strategies for gene modification and precision gene regulation. Students will analyze and present recent primary papers in molecular genetic and genomics. Prerequisite: BIOL 4003
GCD 4151 - Molecular Biology of Cancer
Credits: 3.0 [max 3.0]
Grading Basis: A-F or Aud
Typically offered: Every Fall
Regulatory pathways involved in directing normal development of complex eukaryotic organisms, how disruptions of these pathways can lead to abnormal cell growth/cancer. Causes, detection, treatment, prevention of cancer. prereq: Biol 4003
GCD 5036 - Molecular Cell Biology
Credits: 3.0 [max 3.0]
Typically offered: Every Fall
Analysis of dynamic cellular activities at the molecular level in cell biological fields that are experiencing new research advances not yet reflected in textbooks. Significant emphasis is placed on understanding the experimental basis of our current knowledge of cellular processes through analysis of scientific papers. Project and presentation-based assessments of learning outcomes. prereq: BIOL 4004 or GCD 4005W or grad
MICB 4131 - Immunology
Credits: 3.0 [max 3.0]
Course Equivalencies: MicB 4131/VPM 4131
Typically offered: Every Fall
Molecular, genetic and cellular basis for innate and adaptive immune responses. The immune systems role in; transplantation, autoimmune disease, cancer immunotherapy, vaccinololgy, acquired and genetic immunodeficiencies. Prereq: Biol 2003 or Biol 1009 and [Junior or senior]
NSC 5203 - Basic and Clinical Vision Science
Credits: 3.0 [max 3.0]
Typically offered: Spring Even Year
Basic and clinical vision science. prereq: instr consent
NSC 5461 - Cellular and Molecular Neuroscience
Credits: 3.0 [max 4.0]
Grading Basis: A-F or Aud
Typically offered: Every Fall
Lectures by team of faculty, problem sets in important physiological concepts, discussion of original research papers. prereq: NSc grad student or instr consent
NSC 5561 - Systems Neuroscience
Credits: 4.0 [max 4.0]
Grading Basis: A-F or Aud
Typically offered: Every Fall
Principles of organization of neural systems forming the basis for sensation/movement. Sensory-motor/neural-endocrine integration. Relationships between structure and function in nervous system. Team taught. Lecture, laboratory. prereq: NSc grad student or instr consent
NSC 5661 - Behavioral Neuroscience
Credits: 2.0 [max 4.0]
Grading Basis: A-F or Aud
Typically offered: Every Spring
Neural coding/representation of movement parameters. Neural mechanisms underlying higher order processes such as memorization, memory scanning, and mental rotation. Emphasizes experimental psychological studies in human subjects, single cell recording experiments in subhuman primates, and artificial neural network modeling. prereq: Grad NSc major or grad NSc minor or instr consent
NSC 8217 - Systems and Computational Neuroscience
Credits: 2.0 [max 2.0]
Grading Basis: S-N or Aud
Typically offered: Every Fall & Spring
Advanced seminar. prereq: 5561 or instr consent
PHAR 4248 - Drugs of Abuse
Credits: 2.0 [max 2.0]
Grading Basis: S-N only
Typically offered: Every Spring
Medicinal chemistry/pharmacology/toxicology of substances of abuse. Synthesis/natural product extraction of illicit drugs. Dangers of clandestine lab practices. Sociological aspects of abuse.
PSY 5036W - Computational Vision (WI)
Credits: 3.0 [max 3.0]
Typically offered: Fall Even Year
Applications of psychology, neuroscience, computer science to design principles underlying visual perception, visual cognition, action. Compares biological/physical processing of images with respect to image formation, perceptual organization, object perception, recognition, navigation, motor control. prereq: [[3031 or 3051], [Math 1272 or equiv]] or instr consent
PSY 5038W - Introduction to Neural Networks (WI)
Credits: 3.0 [max 3.0]
Typically offered: Fall Odd Year
Parallel distributed processing models in neural/cognitive science. Linear models, Hebbian rules, self-organization, non-linear networks, optimization, representation of information. Applications to sensory processing, perception, learning, memory. prereq: [[3061 or NSC 3102], [MATH 1282 or 2243]] or instr consent
PSY 5062 - Cognitive Neuropsychology
Credits: 3.0 [max 3.0]
Typically offered: Every Fall
Consequences of different types of brain damage on human perception/cognition. Neural mechanisms of normal perceptual/cognitive functions. Vision/attention disorders, split brain, language deficits, memory disorders, central planning deficits. Emphasizes function/phenomenology. Minimal amount of brain anatomy. prereq: Grad or [[jr or sr], [3011 or 3031 or 3051 or 3061]] or instr consent
BIOL 5272 - Applied Biostatistics
Credits: 4.0 [max 3.0]
Course Equivalencies: Biol 3272Biol 3272H//Biol 5272
Grading Basis: A-F only
Typically offered: Every Fall & Spring
Conceptual basis of statistical analysis. Statistical analysis of biological data. Data visualization, descriptive statistics, significance tests, experimental design, linear model, simple/multiple regression, general linear model. Lectures, computer lab. prereq: High school algebra; BIOL 2003 recommended.
HMED 3001W - Health, Disease, and Healing I (HIS, WI)
Credits: 4.0 [max 4.0]
Course Equivalencies: HMED 3001W/HMED 3001V
Typically offered: Every Fall
Introduction to intellectual/social history of European/American medicine, health care from classical antiquity through 18th century.
HMED 3002W - Health Care in History II (HIS, WI)
Credits: 4.0 [max 4.0]
Typically offered: Every Spring
Introduction to intellectual/social history of European/American medicine, health care in 19th/20th centuries.
HSCI 3211 - Biology and Culture in the 19th and 20th Centuries (HIS, CIV)
Credits: 3.0 [max 3.0]
Course Equivalencies: HSci 3211/5211
Typically offered: Every Fall & Spring
Changing conceptions of life and aims and methods of biology; changing relationships between biology and the physical and social sciences; broader intellectual and cultural dimensions of developments in biology.
HSCI 3242 - Navigating a Darwinian World (HIS)
Credits: 3.0 [max 3.0]
Course Equivalencies: HSci 3242/HSci 5242
Typically offered: Every Fall
In this course we grapple with the impact of Darwin's theory of evolution in the scientific community and beyond. We'll examine and engage the controversies that have surrounded this theory from its inception in the 19th century through its applications in the 21st. What made Darwin a Victorian celebrity, a religious scourge, an economic sage and a scientific hero? We'll look closely at the early intellectual influences on theory development; study the changing and dynamic relationship between science and religion; and critically analyze the application of Darwin's theory to questions of human nature and behavior.
NSC 8320 - Readings in Neurobiology
Credits: 1.0 -4.0 [max 16.0]
Typically offered: Every Fall & Spring
Topics in neurobiology and neurophysiology.
NSCI 3001W - Neuroscience and Society (CIV, WI)
Credits: 4.0 [max 4.0]
Grading Basis: A-F only
Typically offered: Every Spring
Ethical implications. Readings, personal reflections, class discussions, debates, and formal writing. Development of logical arguments, writing skills, oral presentation skills, and teamwork. Students present/argue both their own personal views and those of others. What it is like to have altered mentation, i.e. a brain disease or disability. Readings/multimedia reports from primary neuroscience literature as well as philosophy, policy, and law literature and popular media.
NSCI 4105 - Neurobiology Laboratory I
Credits: 3.0 [max 3.0]
Grading Basis: A-F or Aud
Typically offered: Every Fall
Principles, methods, and laboratory exercises for investigating neural mechanisms and examining experimental evidence.
PHCL 4001 - Mechanisms of Drug Action
Credits: 2.0 [max 2.0]
Typically offered: Every Fall & Spring
How drugs function as applied to the treatment of a single medical condition. Pharmacology, pharmacokinetics, pharmacodynamics, pharmacogenetics, pharmacogenomics. prereq: Upper div or instr consent; [prev or concurrent] courses in [biology, biochemistry] recommended
PHIL 3601W - Scientific Thought (WI)
Credits: 4.0 [max 4.0]
Typically offered: Every Fall & Spring
Science influences us daily, shaping how we understand ourselves and interpret nature. This course is an introduction to how scientists reason about the world, what that means for our lives, and the status of science as a human activity. What is science and what?s so great about it? Is science the ultimate authority on the world and our place in it? This course examines the authority of science, how scientists reason, and science?s status as a human activity. prereq: One course in philosophy or natural science
PHIL 4607 - Philosophy of the Biological Sciences
Credits: 3.0 [max 3.0]
Course Equivalencies: Phil 4607/Phil 5607
Typically offered: Periodic Fall & Spring
Biology dominates the landscape of contemporary scientific research, and yet "biology" consists of a variety of different disciplinary approaches: from protein biochemistry to field ecology, from developmental biology to evolutionary genetics. Many philosophical issues can be found in the concepts and practices of life science researchers from these different disciplines. What is the structure of evolutionary theory? What is a gene? What are the units of selection? What is an individual? What counts as a "cause"? What is the relationship between evolution and development? Are all biological phenomena reducible to genes or molecules? What are adaptations, and how do we identify them? What is an ecological niche? Is there a progressive trend in the history of life? Is there such a thing as 'human nature'? This course is an introduction to these and other related issues in the biological sciences with an emphasis on their diversity and heterogeneity. It is designed for advanced undergraduates with an interest in conceptual questions and debates in biology that are manifested across a variety of majors (e.g., animal science; anthropology; biochemistry; biology, society and environment; biosystems and agricultural engineering; chemistry; ecology, evolution and behavior; genetics, cell biology and development; microbiology; neuroscience; physiology; plant biology; psychology). Some of these issues will appear familiar from previous coursework or opportunities, whereas new issues will be intriguing because of their similarities and differences with those that have been encountered in other contexts.
STAT 3011 - Introduction to Statistical Analysis (MATH)
Credits: 4.0 [max 4.0]
Course Equivalencies: AnSc 3011/ESPM 3012/Stat 3011/
Typically offered: Every Fall, Spring & Summer
Standard statistical reasoning. Simple statistical methods. Social/physical sciences. Mathematical reasoning behind facts in daily news. Basic computing environment.
STAT 3021 - Introduction to Probability and Statistics
Credits: 3.0 [max 3.0]
Course Equivalencies: STAT 3021/STAT 3021H
Typically offered: Every Fall, Spring & Summer
This is an introductory course in statistics whose primary objectives are to teach students the theory of elementary probability theory and an introduction to the elements of statistical inference, including testing, estimation, and confidence statements. prereq: Math 1272
BIOC 4793W - Directed Studies: Writing Intensive (WI)
Credits: 1.0 -7.0 [max 7.0]
Course Equivalencies: BioC 4793W/Biol 4793W/EEB 4793
Grading Basis: S-N only
Typically offered: Every Fall, Spring & Summer
Writing Intensive Directed Studies is an individual-study, literature-based investigation in which the student is mentored directly by a faculty member. One main feature of this course is that the student will receive writing instruction and the written output of the course will be revised during the semester. The project needs to be explained in a Research/Directed Studies contract and agreed on by both the student and faculty mentor. The contract must be approved by the director of undergraduate studies (DUGS) for the major before the student is allowed to register. The contract includes a description of learning objectives for the course, how writing instruction will take place, a timeline for when student writing will be handed in and how it will be assessed, methodology to be used by the student, and how assessment of learning will be conducted by the mentor. Additional oversight is established for this course near the end of the semester the written output is submitted to the DUGS for the major. The DUGS is responsible to determine that the writing meets standards set by the CBS Education Policy Committee for quality of writing, appropriate citation of literature, well-constructed figures, tables, and legends (if present), appropriate use and interpretation of statistics (if present), conclusions that are supported by evidence, and well-formatted references. This course is graded S/N and approval of the DUGS is required before a grade of S can be given by the faculty mentor. prereq: department consent, instructor consent, no more than 7 credits of 4793W, 4794W, 4993, 4994 counts towards CBS major requirements.
BIOC 4794W - Directed Research: Writing Intensive (WI)
Credits: 3.0 -5.0 [max 42.0]
Course Equivalencies: BioC 4793W/Biol 4793W/EEB 4793
Grading Basis: S-N only
Typically offered: Every Fall & Spring
Writing Intensive Directed Research is an individual-study, laboratory or field research experience in which the student is mentored directly by a faculty member. This course is not for students starting out in research. It is intended for students who already have been working in the research group of the mentor and have developed an independent research project. In this course, the student will receive writing instruction through a writing support course (corresponding to 1 credit in addition to the credits of directed research time) that will meet weekly throughout the semester. The written output usually is in the form of a scientific paper describing the results of the student's project. Written output of the course must be revised during the semester and a schedule for writing, assessment, and revision needs to be in place at the beginning of the semester. The project needs to be explained in the campus Directed Research contract and the project and participation in the writing support course agreed on by both the student and faculty mentor. The contract must be approved by the Director of Undergraduate Studies (DUGS) for the major before the student is allowed to register. The contract includes a description of learning objectives for the course, agreement about how writing instruction will take place, confirmation of understanding of the timeline for when student writing will be handed in and how it will be assessed, methodology to be used by the student, and how assessment of learning will be conducted by the mentor. Additional oversight is established for this course - near the end of the semester the written output is submitted to the DUGS for the major. The DUGS is responsible to determine that the writing meets standards set by the CBS Education Policy Committee for quality of writing, appropriate citation of literature, well-constructed figures, tables, and legends (if present), appropriate use and interpretation of statistics (if present), conclusions that are supported by evidence, and well-formatted references. The DUGS can call for a final revision before a grade is given. This course is graded S/N by the writing support course instructor, and approval of both the DUGS and the research mentor is required before a grade of S can be given by the writing support course instructor. This course is for non-Honors students. Students should register for the number of research credits they intend to pursue plus 1 cr for the writing support component (for example: 2-4 cr of research + 1 cr writing support = 3-5 cr). prereq: department consent, instructor consent, no more than a total of 7 credits of 4793W, 4794W, 4993, 4994 combined can count towards CBS major requirements.
PMB 3005W - Plant Function Laboratory (WI)
Credits: 2.0 [max 2.0]
Typically offered: Every Spring
In this lab course, students will use a variety of biological techniques to study plant structure and anatomy, plant physiology, cell biology, and plant growth. This includes topics related to climate change, plant adaptation, crop domestication, and genetic engineering. Includes hands-on laboratory activities and writing focus. While this course is paired with the PMB3002 lecture course, the courses do not need to be taken together or in a specific order. Prereq: BIOL 1009, BIOL 2003, or equiv.
PMB 3007W - Plant, Algal, and Fungal Diversity and Adaptation (WI)
Credits: 4.0 [max 4.0]
Typically offered: Every Fall
Evolution/Ecology/Diversity of plants, fungi, and algae. Lectures highlight phylogenetic diversity among and within multiple eukaryotic groups as well as adaptations and strategies for survival in varied environments. Includes both hands-on laboratory activities and writing focus. prereq: One semester college biology
BIOL 4793W - Directed Studies: Writing Intensive (WI)
Credits: 1.0 -7.0 [max 7.0]
Course Equivalencies: BioC 4793W/Biol 4793W/EEB 4793
Grading Basis: S-N only
Typically offered: Every Fall, Spring & Summer
Writing Intensive Directed Studies is an individual-study, literature-based investigation in which the student is mentored directly by a faculty member. One main feature of this course is that the student will receive writing instruction and the written output of the course will be revised during the semester. The project needs to be explained in a Research/Directed Studies contract and agreed on by both the student and faculty mentor. The contract must be approved by the director of undergraduate studies (DUGS) for the major before the student is allowed to register. The contract includes a description of learning objectives for the course, how writing instruction will take place, a timeline for when student writing will be handed in and how it will be assessed, methodology to be used by the student, and how assessment of learning will be conducted by the mentor. Additional oversight is established for this course near the end of the semester the written output is submitted to the DUGS for the major. The DUGS is responsible to determine that the writing meets standards set by the CBS Education Policy Committee for quality of writing, appropriate citation of literature, well-constructed figures, tables, and legends (if present), appropriate use and interpretation of statistics (if present), conclusions that are supported by evidence, and well-formatted references. This course is graded S/N and approval of the DUGS is required before a grade of S can be given by the faculty mentor. prereq: department consent, instructor consent, no more than 7 credits of 4793W, 4794W, 4993, 4994 counts towards CBS major requirements.
BIOL 4794W - Directed Research: Writing Intensive (WI)
Credits: 3.0 -5.0 [max 7.0]
Course Equivalencies: BioC 4793W/Biol 4793W/EEB 4793
Grading Basis: S-N only
Typically offered: Every Fall & Spring
Writing Intensive Directed Research is an individual-study, laboratory or field research experience in which the student is mentored directly by a faculty member. This course is not for students starting out in research. It is intended for students who already have been working in the research group of the mentor and have developed an independent research project. In this course, the student will receive writing instruction through a writing support course (corresponding to 1 credit in addition to the credits of directed research time) that will meet weekly throughout the semester. The written output usually is in the form of a scientific paper describing the results of the student's project. Written output of the course must be revised during the semester and a schedule for writing, assessment, and revision needs to be in place at the beginning of the semester. The project needs to be explained in the campus Directed Research contract and the project and participation in the writing support course agreed on by both the student and faculty mentor. The contract must be approved by the Director of Undergraduate Studies (DUGS) for the major before the student is allowed to register. The contract includes a description of learning objectives for the course, agreement about how writing instruction will take place, confirmation of understanding of the timeline for when student writing will be handed in and how it will be assessed, methodology to be used by the student, and how assessment of learning will be conducted by the mentor. Additional oversight is established for this course - near the end of the semester the written output is submitted to the DUGS for the major. The DUGS is responsible to determine that the writing meets standards set by the CBS Education Policy Committee for quality of writing, appropriate citation of literature, well-constructed figures, tables, and legends (if present), appropriate use and interpretation of statistics (if present), conclusions that are supported by evidence, and well-formatted references. The DUGS can call for a final revision before a grade is given. This course is graded S/N by the writing support course instructor, and approval of both the DUGS and the research mentor is required before a grade of S can be given by the writing support course instructor. This course is for non-Honors students. Students should register for the number of research credits they intend to pursue plus 1 cr for the writing support component (for example: 2-4 cr of research + 1 cr writing support = 3-5 cr). prereq: department consent, instructor consent, no more than a total of 7 credits of 4793W, 4794W, 4993, 4994 combined can count towards CBS major requirements.
EEB 4330W - Animal Communication (WI)
Credits: 3.0 [max 3.0]
Grading Basis: A-F or Aud
Typically offered: Fall Odd Year
Mechanisms of signal production/perception, signal propagation. How signals can convey information. How signalers, signals, receivers are adapted for communication by natural/sexual selection. prereq: (BIOL 1951 or BIOL 1951H or Biol 1009) and (EEB 3412W or EEB 3411 or EEB 3811W)
EEB 4609W - Ecosystem Ecology (ENV, WI)
Credits: 3.0 [max 3.0]
Typically offered: Every Fall
Regulation of energy and elements cycling through ecosystems. Dependence of cycles on kinds/numbers of species within ecosystems. Effects of human-induced global changes on functioning of ecosystems.
EEB 4793W - Directed Studies: Writing Intensive (WI)
Credits: 1.0 -7.0 [max 7.0]
Course Equivalencies: BioC 4793W/Biol 4793W/EEB 4793
Grading Basis: S-N only
Typically offered: Every Fall, Spring & Summer
Writing Intensive Directed Studies is an individual-study, literature-based investigation in which the student is mentored directly by a faculty member. One main feature of this course is that the student will receive writing instruction and the written output of the course will be revised during the semester. The project needs to be explained in a Research/Directed Studies contract and agreed on by both the student and faculty mentor. The contract must be approved by the director of undergraduate studies (DUGS) for the major before the student is allowed to register. The contract includes a description of learning objectives for the course, how writing instruction will take place, a timeline for when student writing will be handed in and how it will be assessed, methodology to be used by the student, and how assessment of learning will be conducted by the mentor. Additional oversight is established for this course near the end of the semester the written output is submitted to the DUGS for the major. The DUGS is responsible to determine that the writing meets standards set by the CBS Education Policy Committee for quality of writing, appropriate citation of literature, well-constructed figures, tables, and legends (if present), appropriate use and interpretation of statistics (if present), conclusions that are supported by evidence, and well-formatted references. This course is graded S/N and approval of the DUGS is required before a grade of S can be given by the faculty mentor. prereq: department consent, instructor consent, no more than 7 credits of 4793W, 4794W, 4993, 4994 counts towards CBS major requirements.
EEB 4794W - Directed Research: Writing Intensive (WI)
Credits: 3.0 -5.0 [max 7.0]
Course Equivalencies: BioC 4793W/Biol 4793W/EEB 4793
Grading Basis: S-N only
Typically offered: Every Fall & Spring
Writing Intensive Directed Research is an individual-study, laboratory, or field research experience in which the student is mentored directly by a faculty member. This course is not for students starting out in research, it is intended for students who already have been working in the research group of the mentor and have developed an independent research project. In this course the student will receive writing instruction through a writing support course (corresponding to 1 credit in addition to the credits of directed research time) that will meet weekly throughout the semester. The written output usually is in the form of a scientific paper describing the results of the student's project. Written output of the course must be revised during the semester and a schedule for writing, assessment, and revision needs to be in place at the beginning of the semester. The project needs to be explained in the campus Directed Research contract and the project and participation in the writing support course agreed on by both the student and faculty mentor. The contract must be approved by the Director of Undergraduate Studies (DUGS) for the major before the student is allowed to register. The contract includes a description of learning objectives for the course, agreement about how writing instruction will take place, confirmation of understanding of the timeline for when student writing will be handed in and how it will be assessed, methodology to be used by the student, and how assessment of learning will be conducted by the mentor. Additional oversight is established for this course - near the end of the semester the written output is submitted to the DUGS for the major. The DUGS is responsible to determine that the writing meets standards set by the CBS Education Policy Committee for quality of writing, appropriate citation of literature, well-constructed figures, tables, and legends (if present), appropriate use and interpretation of statistics (if present), conclusions that are supported by evidence, and well-formatted references. The DUGS can call for a final revision before a grade is given. This course is graded S/N by the writing support course instructor, and approval of both the DUGS and the research mentor is required before a grade of S can be given by the writing support course instructor.
GCD 4005W - Cell Biology-Writing Intensive (WI)
Credits: 4.0 [max 4.0]
Course Equivalencies: Biol 4004/GCD 3033/4005W
Grading Basis: A-F only
Typically offered: Every Spring
Processes fundamental to cells. Emphasizes eukaryotic cells. Assembly/function of membranes/organelles. Cell division, cell form/movement, intercellular communication, transport, secretion pathways. Cancer cells, differentiated cells. prereq: GCD major, Biol2003/2003H or Biol4003 or grad
GCD 4793W - Directed Studies: Writing Intensive (WI)
Credits: 1.0 -7.0 [max 7.0]
Course Equivalencies: BioC 4793W/Biol 4793W/EEB 4793
Grading Basis: S-N only
Typically offered: Every Fall & Summer
Writing Intensive Directed Studies is an individual-study, literature-based investigation in which the student is mentored directly by a faculty member. One main feature of this course is that the student will receive writing instruction and the written output of the course will be revised during the semester. The project needs to be explained in a Research/Directed Studies contract and agreed on by both the student and faculty mentor. The contract must be approved by the director of undergraduate studies (DUGS) for the major before the student is allowed to register. The contract includes a description of learning objectives for the course, how writing instruction will take place, a timeline for when student writing will be handed in and how it will be assessed, methodology to be used by the student, and how assessment of learning will be conducted by the mentor. Additional oversight is established for this course near the end of the semester the written output is submitted to the DUGS for the major. The DUGS is responsible to determine that the writing meets standards set by the CBS Education Policy Committee for quality of writing, appropriate citation of literature, well-constructed figures, tables, and legends (if present), appropriate use and interpretation of statistics (if present), conclusions that are supported by evidence, and well-formatted references. This course is graded S/N and approval of the DUGS is required before a grade of S can be given by the faculty mentor. prereq: department consent, instructor consent, no more than 7 credits of 4793, 4794, 4993W, 4994W counts towards CBS major requirements.
GCD 4794W - Directed Research: Writing Intensive (WI)
Credits: 3.0 -5.0 [max 42.0]
Course Equivalencies: BioC 4793W/Biol 4793W/EEB 4793
Grading Basis: S-N only
Typically offered: Every Fall & Spring
Writing Intensive Directed Research is an individual-study, laboratory or field research experience in which the student is mentored directly by a faculty member. This course is not for students starting out in research. It is intended for students who already have been working in the research group of the mentor and have developed an independent research project. In this course, the student will receive writing instruction through a writing support course (corresponding to 1 credit in addition to the credits of directed research time) that will meet weekly throughout the semester. The written output usually is in the form of a scientific paper describing the results of the student's project. Written output of the course must be revised during the semester and a schedule for writing, assessment and revision needs to be in place at the beginning of the semester. The project needs to be explained in the campus Directed Research contract and the project and participation in the writing support course agreed on by both the student and faculty mentor. The contract must be approved by the Director of Undergraduate Studies (DUGS) for the major before the student is allowed to register. The contract includes a description of learning objectives for the course, agreement about how writing instruction will take place, confirmation of understanding of the timeline for when student writing will be handed in and how it will be assessed, methodology to be used by the student, and how assessment of learning will be conducted by the mentor. Additional oversight is established for this course - near the end of the semester the written output is submitted to the DUGS for the major. The DUGS is responsible to determine that the writing meets standards set by the CBS Education Policy Committee for quality of writing, appropriate citation of literature, well-constructed figures, tables, and legends (if present), appropriate use and interpretation of statistics (if present), conclusions that are supported by evidence, and well-formatted references. The DUGS can call for a final revision before a grade is given. This course is graded S/N by the writing support course instructor, and approval of both the DUGS and the research mentor is required before a grade of S can be given by the writing support course instructor. This course is for non-Honors students. Students should register for the number of research credits they intend to pursue plus 1 cr for the writing support component (for example: 2-4 cr of research + 1 cr writing support = 3-5 cr). prereq: department consent, instructor consent, no more than a total of 7 credits of 4793W, 4794W, 4993, 4994 combined can count towards CBS major requirements. prereq: department consent, instructor consent, no more than 7 credits of 4793, 4794, 4993W, 4994W counts towards CBS major requirements.
MICB 4161W - Eukaryotic Microbiology (WI)
Credits: 3.0 [max 3.0]
Grading Basis: A-F only
Typically offered: Every Fall
Cell biology of higher eukaryotes, animal/plant pathogenesis, evolution, industrial microbiology. Tetrahymena/Chlamydomons/Paramecium/Toxoplasma/Aspergillus/ Neurospora. prereq: Biol 4003
MICB 4225W - Advanced Laboratory: Microbial Genetics (WI)
Credits: 3.0 [max 3.0]
Course Equivalencies: GCD 4015/Micb 4225
Grading Basis: A-F only
Typically offered: Every Fall
Yeast is used as a model organism for microbial molecular genetic principles and methods such as ultraviolet mutagenesis, isolation and creation of mutant strains, plasmid design and construction, PCR, Sanger sequencing, gene replacement, and bioinformatics. Students will design and execute their own independent research project using hands-on experimentation with advanced molecular methods prereq: MicB 3301 and [Biol 4003 or permission]; priority for seats from waitlist to graduating Microbiology majors
MICB 4793W - Directed Studies: Writing Intensive (WI)
Credits: 1.0 -7.0 [max 7.0]
Course Equivalencies: BioC 4793W/Biol 4793W/EEB 4793
Grading Basis: S-N only
Typically offered: Every Fall, Spring & Summer
Writing Intensive Directed Studies is an individual-study, literature-based investigation in which the student is mentored directly by a faculty member. One main feature of this course is that the student will receive writing instruction and the written output of the course will be revised during the semester. The project needs to be explained in a Research/Directed Studies contract and agreed on by both the student and faculty mentor. The contract must be approved by the director of undergraduate studies (DUGS) for the major before the student is allowed to register. The contract includes a description of learning objectives for the course, how writing instruction will take place, a timeline for when student writing will be handed in and how it will be assessed, methodology to be used by the student, and how assessment of learning will be conducted by the mentor. Additional oversight is established for this course near the end of the semester the written output is submitted to the DUGS for the major. The DUGS is responsible to determine that the writing meets standards set by the CBS Education Policy Committee for quality of writing, appropriate citation of literature, well-constructed figures, tables, and legends (if present), appropriate use and interpretation of statistics (if present), conclusions that are supported by evidence, and well-formatted references. This course is graded S/N and approval of the DUGS is required before a grade of S can be given by the faculty mentor. prereq: department consent, instructor consent, no more than 7 credits of 4793, 4794, 4993W, 4994W counts towards CBS major requirements.
MICB 4794W - Directed Research: Writing Intensive (WI)
Credits: 3.0 -5.0 [max 15.0]
Course Equivalencies: BioC 4793W/Biol 4793W/EEB 4793
Grading Basis: S-N only
Typically offered: Every Fall & Spring
Writing Intensive Directed Research is an individual-study, laboratory or field research experience in which the student is mentored directly by a faculty member. This course is not for students starting out in research. It is intended for students who already have been working in the research group of the mentor and have developed an independent research project. In this course the student will receive writing instruction through a writing support course (corresponding to 1 credit in addition to the credits of directed research time) that will meet weekly throughout the semester. The written output usually is in the form of a scientific paper describing the results of the student's project. Written output of the course must be revised during the semester and a schedule for writing, assessment, and revision needs to be in place at the beginning of the semester. The project needs to be explained in the campus Directed Research contract and the project and participation in the writing support course agreed on by both the student and faculty mentor. The contract must be approved by the Director of Undergraduate Studies (DUGS) for the major before the student is allowed to register. The contract includes a description of learning objectives for the course, agreement about how writing instruction will take place, confirmation of understanding of the timeline for when student writing will be handed in and how it will be assessed, methodology to be used by the student, and how assessment of learning will be conducted by the mentor. Additional oversight is established for this course - near the end of the semester the written output is submitted to the DUGS for the major. The DUGS is responsible to determine that the writing meets standards set by the CBS Education Policy Committee for quality of writing, appropriate citation of literature, well-constructed figures, tables, and legends (if present), appropriate use and interpretation of statistics (if present), conclusions that are supported by evidence, and well-formatted references. The DUGS can call for a final revision before a grade is given. This course is graded S/N by the writing support course instructor, and approval of both the DUGS and the research mentor is required before a grade of S can be given by the writing support course instructor. This course is for non-Honors students. Students should register for the number of research credits they intend to pursue plus 1 cr for the writing support component (for example: 2-4 cr of research + 1 cr writing support = 3-5 cr). prereq: department consent, instructor consent, no more than a total of 7 credits of 4793W, 4794W, 4993, 4994 combined can count towards CBS major requirements. prereq: department consent, instructor consent, no more than 7 credits of 4793, 4794, 4993W, 4994W counts towards CBS major requirements.
NSCI 3001W - Neuroscience and Society (CIV, WI)
Credits: 4.0 [max 4.0]
Grading Basis: A-F only
Typically offered: Every Spring
Ethical implications. Readings, personal reflections, class discussions, debates, and formal writing. Development of logical arguments, writing skills, oral presentation skills, and teamwork. Students present/argue both their own personal views and those of others. What it is like to have altered mentation, i.e. a brain disease or disability. Readings/multimedia reports from primary neuroscience literature as well as philosophy, policy, and law literature and popular media.
NSCI 3102W - Neurobiology II: Perception and Behavior (WI)
Credits: 3.0 [max 3.0]
Course Equivalencies: Biol 3102W/NSci 3102W
Grading Basis: A-F or Aud
Typically offered: Every Fall & Spring
This is the second of the introductory neurobiology courses. It introduces fundamental concepts in systems and behavioral neuroscience with emphasis on the neural circuits underlying perception and sensorimotor integration. Lectures will examine the neural basis of specific behaviors arising from the oculomotor, visual and auditory systems and notes are available on Canvas. Topics include: retinal processing, functional organization in the cerebral cortex, neural circuit development, language, reward, and addiction. Students must learn to read scientific papers, and to understand the main ideas well enough to synthesize them and communicate them both orally and in writing. The course is writing intensive: exams are in essay and short answer format, and a 10-15 page term paper is required. The course is required for students majoring in neuroscience. The course consists of two hours of lecture and one hour of discussion per week.
NSCI 4793W - Directed Studies: Writing Intensive (WI)
Credits: 1.0 -6.0 [max 42.0]
Course Equivalencies: BioC 4793W/Biol 4793W/EEB 4793
Grading Basis: S-N or Aud
Typically offered: Every Fall, Spring & Summer
Individual study of selected topics. Emphasis on readings, use of scientific literature. Writing intensive. prereq: instr consent, dept consent; no more than 7 cr of [4793, 4794, 4993, 4994] may count toward major requirements
NSCI 4794W - Directed Research: Writing Intensive (WI)
Credits: 3.0 -5.0 [max 42.0]
Course Equivalencies: BioC 4793W/Biol 4793W/EEB 4793
Grading Basis: S-N or Aud
Typically offered: Every Fall & Spring
Writing Intensive Directed Research is an individual-study, laboratory or field research experience in which the student is mentored directly by a faculty member. This course is not for students starting out in research. It is intended for students who already have been working in the research group of the mentor and have developed an independent research project. In this course the student will receive writing instruction through a writing support course (corresponding to 1 credit in addition to the credits of directed research time) that will meet weekly throughout the semester. The written output usually is in the form of a scientific paper describing the results of the student's project. Written output of the course must be revised during the semester and a schedule for writing, assessment, and revision needs to be in place at the beginning of the semester. The project needs to be explained in the campus Directed Research contract and the project and participation in the writing support course agreed on by both the student and faculty mentor. The contract must be approved by the Director of Undergraduate Studies (DUGS) for the major before the student is allowed to register. The contract includes a description of learning objectives for the course, agreement about how writing instruction will take place, confirmation of understanding of the timeline for when student writing will be handed in and how it will be assessed, methodology to be used by the student, and how assessment of learning will be conducted by the mentor. Additional oversight is established for this course - near the end of the semester the written output is submitted to the DUGS for the major. The DUGS is responsible to determine that the writing meets standards set by the CBS Education Policy Committee for quality of writing, appropriate citation of literature, well-constructed figures, tables, and legends (if present), appropriate use and interpretation of statistics (if present), conclusions that are supported by evidence, and well-formatted references. The DUGS can call for a final revision before a grade is given. This course is graded S/N by the writing support course instructor, and approval of both the DUGS and the research mentor is required before a grade of S can be given by the writing support course instructor. This course is for non-Honors students. Students should register for the number of research credits they intend to pursue plus 1 cr for the writing support component (for example: 2-4 cr of research + 1 cr writing support = 3-5 cr). prereq: department consent, instructor consent, no more than a total of 7 credits of 4793W, 4794W, 4993, 4994 combined can count towards CBS major requirements.
PMB 4516W - Plant Cell Biology: Writing Intensive (WI)
Credits: 3.0 [max 3.0]
Course Equivalencies: PMB 4516W/ PMB 5516
Typically offered: Periodic Spring
In this course, we will cover current important research topics in plant cell biology. We will cover many plant-specific topics such as gravitropism, plant cell wall biosynthesis, structure and function, plasmodesmatal connections, signal transduction, tip growth, plant cytokinesis, cell energetics. We will also cover some topics that are important for both plant, fungal, and animal cell biology such as cell polarity, the cytoskeleton, protein sorting, and the secretory system. Since we will be using recent literature as the course text, some important and classic cell biology topics will not be covered. In the field of cell biology, new discoveries are often the result of improvements in technology especially in imaging, so we will cover some recent advances in methodology. This is also a writing class with the goal of helping students become familiar and comfortable with writing in a scientific style. There will be writing instruction and there will be some reading assignments on scientific writing. There are no enforced prerequisites. Introductory courses on plants, genetics, and biochemistry are helpful.
PMB 4793W - Directed Studies: Writing Intensive (WI)
Credits: 1.0 -7.0 [max 7.0]
Course Equivalencies: BioC 4793W/Biol 4793W/EEB 4793
Grading Basis: S-N only
Typically offered: Every Fall, Spring & Summer
Writing Intensive Directed Studies is an individual-study, literature-based investigation in which the student is mentored directly by a faculty member. One main feature of this course is that the student will receive writing instruction and the written output of the course will be revised during the semester. The project needs to be explained in a research/directed studies contract and agreed on by both the student and faculty mentor. The contract must be approved by the director of undergraduate studies (DUGS) for the major before the student is allowed to register. The contract includes a description of learning objectives for the course, how writing instruction will take place, a timeline for when student writing will be handed in and how it will be assessed, methodology to be used by the student, and how assessment of learning will be conducted by the mentor. Additional oversight is established for this course near the end of the semester the written output is submitted to the DUGS for the major. The DUGS is responsible to determine that the writing meets standards set by the CBS Education Policy Committee for quality of writing, appropriate citation of literature, well-constructed figures, tables, and legends (if present), appropriate use and interpretation of statistics (if present), conclusions that are supported by evidence, and well-formatted references. This course is graded S/N and approval of the DUGS is required before a grade of S can be given by the faculty mentor. prereq: department consent, instructor consent, no more than 7 credits of 4793W, 4794W, 4993, 4994 counts towards CBS major requirements.
PMB 4794W - Directed Research: Writing Intensive (WI)
Credits: 3.0 -5.0 [max 7.0]
Course Equivalencies: BioC 4793W/Biol 4793W/EEB 4793
Grading Basis: S-N only
Typically offered: Every Fall & Spring
Writing Intensive Directed Research is an individual-study, laboratory or field research experience in which the student is mentored directly by a faculty member. This course is not for students starting out in research. It is intended for students who already have been working in the research group of the mentor and have developed an independent research project. In this course the student will receive writing instruction through a writing support course (corresponding to 1 credit in addition to the credits of directed research time) that will meet weekly throughout the semester. The written output usually is in the form of a scientific paper describing the results of the student's project. Written output of the course must be revised during the semester and a schedule for writing, assessment, and revision needs to be in place at the beginning of the semester. The project needs to be explained in the campus Directed Research contract and the project and participation in the writing support course agreed on by both the student and faculty mentor. The contract must be approved by the Director of Undergraduate Studies (DUGS) for the major before the student is allowed to register. The contract includes a description of learning objectives for the course, agreement about how writing instruction will take place, confirmation of understanding of the timeline for when student writing will be handed in and how it will be assessed, methodology to be used by the student, and how assessment of learning will be conducted by the mentor. Additional oversight is established for this course - near the end of the semester the written output is submitted to the DUGS for the major. The DUGS is responsible to determine that the writing meets standards set by the CBS Education Policy Committee for quality of writing, appropriate citation of literature, well-constructed figures, tables, and legends (if present), appropriate use and interpretation of statistics (if present), conclusions that are supported by evidence, and well-formatted references. The DUGS can call for a final revision before a grade is given. This course is graded S/N by the writing support course instructor, and approval of both the DUGS and the research mentor is required before a grade of S can be given by the writing support course instructor. This course is for non-Honors students. Students should register for the number of research credits they intend to pursue plus 1 cr for the writing support component (for example: 2-4 cr of research + 1 cr writing support = 3-5 cr). prereq: department consent, instructor consent, no more than a total of 7 credits of 4793W, 4794W, 4993, 4994 combined can count towards CBS major requirements.